

LIFE GreenYourRoute: A European innovative logistic platform for last mile
delivery of goods in urban environment

 Page | 1

LIFE GreenYourRoute: A European innovative logistic

platform for last mile delivery of goods in urban

environment

Deliverable C3.1: Report focusing on the results

achieved and/or deviations experienced/expected as

compared to the original estimates/inputs in the KPI

Webtool and LIFE performance Indicators

Simulation Tool

Partner responsible for this report: UTH

LIFE GreenYourRoute: A European innovative logistic platform for last mile
delivery of goods in urban environment

 Page | 2

Document Information Summary

Action: C3 Update and Monitoring of Key Project-level Indicators

Sub-action: Sub-action C3.1: Update of Key Project-level Indicators

Sub-action C3.2: Monitor and evaluation Key Project-level

Indicators

Deliverable

Number:

C3.1

Deliverable Title: Report focusing on the results achieved and/or deviations

experienced/expected as compared to the original

estimates/inputs in the KPI Webtool and LIFE performance

Indicators

Leader: UTH

Participants: -

Author(s) Dr. Georgios K.D. Saharidis, Zoi Moza, Georgios Kalantzis,

Neilos Psathas.

Project website
www.greenyourroute.com

Status: Final

http://www.greenyourroute.com/

LIFE GreenYourRoute: A European innovative logistic platform for last mile
delivery of goods in urban environment

 Page | 3

Disclaimer:

The LIFE GYR [LIFE17 ENV/GR/000215] project is co-funded by the LIFE programme, the

EU financial instrument for the environment.

The sole responsibility for the content of this report lies with the authors. It does not

necessarily reflect the opinion of the European Union. Neither the EASME nor the European

Commission are responsible for any use that may be made of the information contained

therein.

Start Date: 01 September 2018 - Duration: 42 months

LIFE GreenYourRoute: A European innovative logistic platform for last mile
delivery of goods in urban environment

 Page | 4

Contents

Contents ... 4

1 Introduction .. 5

2 Algorithm implementation ... 5

2.1 Step 1: Calculation of weighted center .. 5

2.2 Step 2: Statistical analysis .. 6

2.3 Step 3: Scanning .. 7

2.4 Step 4: Problem re-assignment of customers to salesmen .. 9

2.5 Step 5: Re-assignment of customers to a different salesman. 10

2.6 Step 6: Optimal routing plan of trucks .. 13

3 Conclusion .. 14

4 Annex ... 15

LIFE GreenYourRoute: A European innovative logistic platform for last mile
delivery of goods in urban environment

 Page | 5

1 Introduction

In this deliverable, the developed by UTH simulation tool in order to monitor the

environmental and socio-economic impact of the project by performing a comparison between

the former empirical routing planning approach and the routing planning approach resulted

by GYR service is presented.

As the demonstrators will stop following empirical approaches to create, their daily routing

planning, due to the use of GYR service, a simulation tool to define these potential routing

plans (i.e. empirical plans) should be developed.

The simulation tool used the input data (i.e. daily orders, available fleet of vehicles etc.) of the

demonstrators into the GYR platform in order to generate the potential routing plans in case

an empirical approach was followed.

This simulation tool is a heuristic routing tool which simulates the former approach providing

sub optimal and feasible routing plans based on daily routing requests. The simulation tool

includes emission calculation models used in GYR platform and heuristic rules such as

heuristic clustering approach grouping customers based on geo-data, heuristically

decomposing the problem into vehicle selection and then assignment of customers to the

selected vehicles, defining visiting order of customers based on the criteria of the nearest

neighbor. This simulation tool provided us with the opportunity to obtain the empirical

solution fast with an automatic, systematic and easy way, without the demonstrators having

to invest effort and spend time (i.e. minimum 5 hours per day) to provide a solution according

to the former approach.

The Simulation tool includes an optimization problem where a number of trucks need to visit

a number of customers in order to deliver products or collects orders or pick up products.

2 Algorithm implementation

The ultimate goal of the algorithm is to give each demonstration a daily routing plan. The

steps taken to solve this problem are explained below:

2.1 Step 1: Calculation of weighted center

The first step is to calculate the weighted center of customer points. By reading the input data

and knowing the geographic coordinates of each customer, it is trivial. It is noted that points

are taken as points in the Cartesian plane where the customer coordinates are translated into

Cartesian coordinates. Calculation of the weighted center is done by computing:

�̅� =
1

𝑁
∑ 𝑥𝑖 , �̅� =

1

𝑁
∑ 𝑦𝑖

𝑖𝑖

where Ν is the total number of customers ανδ (𝑥𝑖 , 𝑦𝑖) are the coordinates. The following figure

present graphically the weighted center of the reference example.

LIFE GreenYourRoute: A European innovative logistic platform for last mile
delivery of goods in urban environment

 Page | 6

Figure 1: Weighted center of reference example

This step simulate the first action of the person responsible to create the daily routing plan

referred to as routing planner. This step is not performed in a daily base by the routing planner

of ATHINAKI, PLUS and KOUKOUZELIS. This step is performed in a daily base from the

routing planner of the customer of CEDA and ITACA.

2.2 Step 2: Statistical analysis

In the second step, the algorithm starts with a brief statistical analysis of the data that

corresponds to customers. Returns user information about the problem that may help him

identify errors or noise that may have occurred in the data. For the volume and distances from

the center of gravity, the algorithm calculates mean value and variance. It returns to the user

all clients who have extreme behaviors, i.e. they have an order (i.e. volume) in excess of μ +

2σ (where the average and σ the standard deviation of the population). The statistical analysis

checks whether the population has a high coefficient of variation (σ / μ) and informs the user

about it.

An example provided by the simulation tool is the following:

While the average turnover is 206.13 (but highly volatile) the following customers have
extremely higher turnover
Customer ID: 111 Volume: 4573.96
Customer ID: 166 Volume: 1709.84
Customer ID: 423 Volume: 1408.43
Customer ID: 167 Volume: 1233.82
Customer ID: 537 Volume: 1229.86
Customer ID: 604 Volume: 1139.54
Customer ID: 105 Volume: 1131.54
…………………………………………………………
The following customers are far away from the centre of all points
Customer ID: 15

LIFE GreenYourRoute: A European innovative logistic platform for last mile
delivery of goods in urban environment

 Page | 7

Customer ID: 16
Customer ID: 47
Customer ID: 51
Customer ID: 59
Customer ID: 262
Customer ID: 280
Customer ID: 281
…………………………………………………

Figure 2: Statistical Analysis of the data

This step simulates the customer screening in order to identify if they are customers with

order of high volume and a special truck should be used to satisfied them.

2.3 Step 3: Scanning

The goal in Step 3 is to create original customer clusters with a single objective, in this

algorithm step, the quantification of a number of visits to each truck. We choose a random

customer of the grid and create a line that starts from the center of gravity (i.e. weighted

center) of the cloud of visiting points and extends in the direction of the random customer

called the "starting point". So, we create the following line in the reference example:

Figure 3: Scanning reference example data

We consider this line as the reference axis, which for each customer defines an angle φ in

relation to it. Apparently the original customer that corresponds to the "starting point" has φ

= 0 while all other customers are sorted in ascending order based on their angle φi. In defining

the area of responsibility for the first vendor, we sense the reference axis from the position to

which it is clockwise assigning clients to the current area of responsibility until the number of

visits by all the clients in the area is equal to the average number of visits we would like every

specific truck has. As soon as the number of customer visits in the current responsibility area,

that is to say, between the initial and final radius of the scanner we created, is probably the

average number of visits, we stop creating the current responsibility area, defining the area of

LIFE GreenYourRoute: A European innovative logistic platform for last mile
delivery of goods in urban environment

 Page | 8

responsibility of the first vendor. The above procedure is done as many times as the number

of available trucks in order to define for each of them their area of responsibility. Applying

this procedure to the reference example, the following three areas (i.e. assuming 3 trucks are

available for this urban region) of responsibility are schematically created:

Figure 4: Region of responsibility for each Truck.

The algorithm could be enough for the original random customer to define the reference axis,

and the process of assigning the responsibility areas to be completed once. For the better

creation of responsibility areas, the algorithm repeats the above steps with different original

customers by taking different areas of responsibility for each truck. The best result of areas of

responsibility is defined as the result where the areas of responsibility share as far as possible

the distant points between them. In a good result of liability areas vendors will be as good as

remote customers so that the workload for each of them is equalized.

The following simple procedure is used to evaluate each result of liability areas. Each

responsibility area has its own center of gravity and a distance from the center of gravity of

all points as calculated above in Step 1 of the algorithm. Another cluster has a remote center

of gravity in relation to the whole, the other closest, thus defining how remote the truck's area

of responsibility is. To find the best solution of liability areas we check for each solution

anymore is the distance each center of gravity of each seller from the center of gravity of all

points. In the end, we choose the solution whose distance between the most distant from the

center and the closest to the center area of responsibility is minimal. Note that there may be

alternative ways of implementing this step, such as examining the combination of liability

areas with the smallest fluctuation in the distances between their weight centers and the

overall cloud center of gravity of the cloud.

At the end of this step, initial areas of responsibility have been defined based solely on the

number of visiting points. It is possible, due to the data of the problem to be solved, whether

the customer orders are added to each area of responsibility and the orders volumes are not

Region of Truck 1

Region of Truck 3

Region of Truck 2

LIFE GreenYourRoute: A European innovative logistic platform for last mile
delivery of goods in urban environment

 Page | 9

evenly distributed to trucks as we would like. To this end, the next Step 4 was developed to

resolve any such problems.

This step simulates the closeting approach of the routing planners who selects visiting points

to be assigned to a truck.

2.4 Step 4: Problem re-assignment of customers to salesmen

Previous Step 3 gave us an initial customer assignment to trucks, but it may be problematic in

terms of the number of orders (i.e. volume) that each truck transports.

To solve this problem, we developed a model of mixed integer mathematical programming

that aims to transfer customers from one truck to another truck in order to achieve the best

possible volume for each truck.

We declare that the cost of assigning the customer i to the truck k is 0 if the customer is

ultimately assigned to the truck initially assigned to the previous Step 3. If given to any other

truck, then the cost is 1.

The following definitions of indexes and data are used:

Indexes Description
i Customers
k truck
vV Range of fluctuation of the total number of visits
vT Range of fluctuation of orders/volume
Parameter Description

𝑞𝑖 Order/volume of customer i

�̅� Average level of orders

�̅� Average number of visits
𝑓𝑖 Frequency of visits for customer i

𝑐𝑖𝑘 Cost to assignment customer i to salesman k, 0 if the customer stay
assigned to the initially assigned salesman in step 3 and 1 if the
customer is re-assigned to a different salesman.

Range of fluctuation of visits or volume is the percentage of the average below which no truck

should fall. For example, varVisits = 0.95 means that no truck may have a visit count of less

than 95% of the average number of visits. Similarly applies to the volume and the loading

capacity of the trucks.

For the following mathematical model we define the xik decision binary variable, which takes

the value 1 when the client i is assigned to the truck k and 0 if not, xik∈ {0,1}. Based on the

above, we construct the following mixed-integer linear programming model:

min ∑ 𝑐𝑖𝑘𝑥𝑖𝑘

𝑖𝑘

 (1)

∑ 𝑥𝑖𝑘 = 1 ∀𝑖

𝑘

 (2)

𝑣𝑇 �̅� ≤ ∑ 𝑥𝑖𝑘𝑞𝑖𝑓𝑖

𝑖

≤ (2 − 𝑣𝑇) �̅� ∀𝑘 (3)

LIFE GreenYourRoute: A European innovative logistic platform for last mile
delivery of goods in urban environment

 Page | 10

𝑣𝑉 �̅� ≤ ∑ 𝑥𝑖𝑘

𝑖

𝑓𝑖 ≤ (2 − 𝑣𝑉) �̅� ∀𝑘 (4)

Function (1) corresponds to the objective function of the mathematical model and aims to

minimize the assignment cost of customers to trucks. Constraint (2) guarantees that each

customer will be assigned to one truck. The inequality (3) controls that the turnover to be

disbursed by each truck, after the assignment, must not be outside the specified turnover

limits, and the inequality (4) checks that the number of visits will also not violate the respective

thresholds.

By resolving the above model, customers have been assigned to trucks in a way that respects

two conditions that may not have been met in the previous step: a) the number of visits each

trcuks will be required to make throughout the time be less than 95% of the average and at

the same time b) the volume that will disburse from the orders each truck is not less than 95%

of the average among the trucks. In addition, the algorithm maximizes the geographic

distribution of customers to truck, minimizing the number of clients assigned to clusters

different from those assigned to Step 3.

If the cost of the solution returned is zero, this means that there is no customer assigned to

another cluster beyond what was initially assigned to Step 3. Otherwise, two cases may have

occurred: a) geographic overlaps will be shown to be corrected in the next Step 5 of the

algorithm and / or b) those customers assigned to another cluster were within the cluster

boundaries and thus did not create any overlap.

Note that this mathematical model is solved by the branch and bound method using the

Feasibility Pump1 method, which is applied for 100 iterations. The current step 4 has been

adapted to stop at the first integer solution. If more time to resolve this step is available,

suggest the adaptation of the COIN-OR solving algorithm by setting the solution's

optimization tolerance interval e.g. 100% or less in order to obtain an even better solution.

This step simulates the correction actions of the routing planner to the first routing plan

generated in the previous step. The routing planner always studies the initial defined plan

and investigates its potential feasibility to be implemented. If the trucks are over loaded or if

the trucks have to visit a high number of customers, the routing planner tries to balance the

volume and the number of visiting points between the trucks.

2.5 Step 5: Re-assignment of customers to a different salesman.

This step is triggered when overriding areas of responsibility are detected in the previous step.

We believe that each customer puts a request for a truck to another truck due to being a

customer of a truck in the area of responsibility of another truck. In order to find any

overlapping, compare the assigned customers from Step 4 and those that came up with the

reference axis and the process of defining the responsibility areas by scanning this axis in Step

3. Those who are in Step 4 in the responsibility area are different than those in Step 3, they

create the transfer requests. A transfer request is the transfer of a customer placed in a different

responsibility area in its original one. This process creates the following table of transitions:

1 Fischetti, L. Bertacco, and A. Lodi. A feasibility pump heuristic for general mixed-integer problems. Technical report, Universita
di Bologna – D.E.I.S. – Operations Research, 2005

LIFE GreenYourRoute: A European innovative logistic platform for last mile
delivery of goods in urban environment

 Page | 11

Customer
Salesman

Mode
From To

5 0 2 False

18 0 3 False

187 0 1 False

………… ………… ………… …………

Where each customer requests a transfer from one truck to another and the last column shows

the situation in which this request was found after the mathematical model below has been

resolved.

For the following mathematical model, we insert the binary variable zs where s is the request

(the line of the above table) with 1 if the request is finally accepted and 0 if not, zs∈ {0,1}.

The following table presents the definitions of indexes and parameters:

Δείκτης Περιγραφή
s Index of re-assignment including customers i and truck from/to
k Index of truck

Parameters Description

𝑄𝑚𝑖𝑛/𝑄𝑚𝑎𝑥 Max and min volume

𝑉𝑚𝑖𝑛/𝑉𝑚𝑎𝑥 Max and min number of visits

𝛥+ Group of requests for re-assigment of customers assigmened to truck
(Column «to salesman»)

𝛥− Group of requests for re-assigment of customers assigmened to truck
(Column «from salesman»)

𝑄𝑘 Total volume resulted in step 4

𝑉𝑘 Total number of visits resulted in step 4

𝑞𝑠 Amount corresponding to the customer requesting the transfer from
one truck to another and corresponding to the request s.

𝑓𝑠 Frequency of visit corresponding to the customer requesting transfer
from one truck to another and corresponding to the request s.

To solve this problem we construct the following mixed-integer linear programming model:

max ∑ 𝑧𝑠

𝑖

 (5)

𝑄𝑚𝑖𝑛 − 𝑄𝑘 ≤ ∑ 𝑧𝑠𝑞𝑠𝑓𝑠

𝑠∈𝛥+

− ∑ 𝑧𝑠𝑞𝑠𝑓𝑠

𝑠∈𝛥−

≤ 𝑄𝑚𝑎𝑥 − 𝑄𝑘 ∀𝑘 (6)

𝑉𝑚𝑖𝑛 − 𝑉𝑘 ≤ ∑ 𝑧𝑠𝑓𝑠

𝑠∈𝛥+

− ∑ 𝑧𝑠𝑓𝑠

𝑖∈𝛥−

≤ 𝑉𝑚𝑎𝑥 − 𝑉𝑘 ∀𝑘 (7)

Function (5) is the objective function of the mathematical model which seeks to maximize the

satisfaction of the requested re-assigmnets. Inequalities (6) and (7) guarantee that the

quantities of orders and the number of post-shipment visits must meet the limits we have set

for each truck (i.e. not below 95% of the average and not more than 105% of this).

LIFE GreenYourRoute: A European innovative logistic platform for last mile
delivery of goods in urban environment

 Page | 12

To solve this model we also apply branch and bound methods with Feasibility Pump and set

the solution's optimization tolerance range to 10%. The optimization tolerance interval of the

solution is set at this rate because we keep a good balance in the quality of the solution that

will occur and in the time it takes to converge.

At this point the algorithm checks whether all the number of requests is satisfied or not. If not,

we have two options, depending on the user's preference:

• If the user has stated that he / she wants an absolute geographical distribution, then

we meet the demands of unsatisfied customers at the expense of the balance of volume

and the total number of visits,

• If the user does not want an absolute geographical distribution, then we leave the

customers as they are by observing the constraints of volume and number of visits by

conceding to the geographical distribution.

One such example is shown in the following figure where the two red customers (the red

squares) are the one in the green responsibility area and the other the red truck, creating a 2-

point geographic distribution problem.

Figure 5: Example of problematic regions of responsibility

Another example where the user has not selected a geographical breakdown as absolute

criterion is shown below. In the figure there are some overlaps resulting from the user

choosing to fully meet the volume criteria and the number of visits.

Responsibility area of
Truck 1

Responsibility area of
Truck 3

Responsibility area of
Truck 2

LIFE GreenYourRoute: A European innovative logistic platform for last mile
delivery of goods in urban environment

 Page | 13

Figure 6: Example of absolute satisfaction of volume and number of visits where the geographical

coverage is not totally satisfied

At the end of this step, the program creates a <NAME> -Assignment.txt file listing each client

and the seller to whom it was assigned. The file shows the results as follows:

Customer Vehicle
1 3
2 3
5 3
6 2
7 2
8 2
9 3
10 2
…………………………….

The previous step simulates the correction actions of the routing planner to the first routing

plan generated in the 4th step. The current step revise this plan trying at the same time to

minimize the total distance travelled by the trucks. At the end of this step the routing planner

has trucks and orders assigned to trucks.

2.6 Step 6: Optimal routing plan of trucks

In step is the final step of the simulation tool. Orders assigned to trucks should be planned to

be delivered in the optimal order/sequence. For this reason the classical nearest insertion

algorithm is coded and implemented to define the optimal routes of the trucks.

The algorithm includes the following steps

Step 1. Start with a sub-graph consisting of node i only.

Step 2. Find node r such that cir is minimal and form sub-tour i-r-i.

Step 3. (Selection step) Given a sub-tour, find node r not in the sub-tour closest to any node j

in the sub-tour; i.e. with minimal crj

Step 4. (Insertion step) Find the arc (i, j) in the sub-tour which minimizes cir + crj - cij. Insert r

between i and j.

Step 5. If all the nodes are added to the tour, stop. Else go to step 3

LIFE GreenYourRoute: A European innovative logistic platform for last mile
delivery of goods in urban environment

 Page | 14

3 Conclusion

The algorithm developed consists of 6 basic steps: Step 1: Calculate the center of weight

(points), Step 2: Statistical analysis, Step 3: Scanning, Step 4: Problem re-assignment of

customers to salesmen, Step 5: Re-assignment of customers to a different salesman, and Step

6: optimal routing plan of trucks. This simulation tool has been applied to the examples

defined during the real life practice of GYR service. The obtained routing plans using this

simulation tool have been compared with the obtained routing plans by the GYR service

which actually were the plans implemented by the demonstrators.

LIFE GreenYourRoute: A European innovative logistic platform for last mile
delivery of goods in urban environment

 Page | 15

4 Annex

In this annex the code including the assignment of orders to trucks is presented:

#include <iostream>

#include <fstream>

#include <windows.h>

#include <stdio.h>

#include <time.h>

#include <string>

#include <sstream>

#include <vector>

#include <numeric>

#include <algorithm>

#include "OsiClpSolverInterface.hpp"

#include "CoinPackedVector.hpp"

#include "CoinPackedMatrix.hpp"

#include "CbcModel.hpp"

#include "CbcHeuristic.hpp"

#include "CbcHeuristicFPump.hpp"

#include "CbcCompareActual.hpp"

#include "CbcBranchDynamic.hpp"

#include "CbcHeuristicRINS.hpp"

#include "CbcHeuristicPivotAndFix.hpp"

using namespace std;

// I am using this bigM once, in the Daily scheduling problem

const double bigM = 1000;

// The calc_Index function is called to transform a 2D matrix to 1D array

// For instance, instead of calling the element A[5][7] of a 10x10 matrix

LIFE GreenYourRoute: A European innovative logistic platform for last mile
delivery of goods in urban environment

 Page | 16

// we use calc_Index(5, 7, 10) which returns 57 and have the element B[57]

// We use this function because we want to avoid matrices of more than

// one dimension

int calc_Index(int i, int j, int J)

{

 return (i*J+j);

}

// The same function for a 3D matrix. It turns the 3D matrix into a 1D array

int calc_Index(int i, int j, int k ,int J, int K)

{

 return (i*J*K+j*K+k);

}

// This structure is the structure of customer

// It includes everything read from the file and some additional info,

// such as to which vehicle this customer is assigned to, to which cluster

// and also what's his phi angle for the clustering of the first round

struct Customer

{

 int id, iter; // id as read from file. Iter iterates from 0 to nCustomers, so that

Customer[i] is the i-th node read

 double x, y; // cordinates

 double q; // turnover

 int f; // frequency

 int assignedTo; // to which vehicle this node is assigned to

 int clusteredTo; // to which cluster is this node assigned to

 double phi;

};

LIFE GreenYourRoute: A European innovative logistic platform for last mile
delivery of goods in urban environment

 Page | 17

// The only use of this class is to be able to search a vector of structs

// and return true if the ID of the item is found in the vector of structs

class MatchesID

{

 int _ID;

public:

 MatchesID(const int &id) : _ID(id) {}

 template<class ItemType>

 bool operator()(const ItemType &item) const

 {

 return item.id == _ID;

 }

};

// This structure is a a simple structure of two numbers

// For instance it is used to store the (long, lat) of a customer

// or the two borders of a cluster region in angles, for instance

// (from a=30 degress, to b=50 degrees)

// It is also used to say which two clusters should be twinned.

// Clusters are twinned when their number of assigned customers

// is small

template <typename T>

struct TwoNumbers

{

 T a;

 T b;

};

LIFE GreenYourRoute: A European innovative logistic platform for last mile
delivery of goods in urban environment

 Page | 18

// This function is used in conjuction with a vector to return

// a vector sorted by angle. First will be placed the smaller phi

bool smallerPhi(const Customer &a, const Customer &b)

{

 return (a.phi < b.phi);

}

// This function is used to sort customers starting from the one with highest turnover

// It is used by the function performAnalysis when reporting bizarre data

bool higherTurnover(const Customer &a, const Customer &b)

{

 return (a.q > b.q);

}

// This function is used in conjuction with a vector to return

// a vector sorted by "iter". Everytime we call this function

// we ensure that the vector Customers (for instance) is sorted

// as it was read from the file

bool asReadInFile(const Customer &a, const Customer &b)

{

 return (a.iter < b.iter);

}

// We use this struct for the requests of wrongly assigned customers to vehicle

// to change clusters. For instance customer=10, requests to leave from

// vehicle from=2 and go to vehicle to=3. His request has been satisfied

// if fixed=true. In this case, the fixed is a boolean that shows whether the

// request is fulfilled. This struct is used at the fixOverlaps step of the algorithm

// We may use the same struct with fixed being double, in another context. This is

// why it is templated

LIFE GreenYourRoute: A European innovative logistic platform for last mile
delivery of goods in urban environment

 Page | 19

template <typename T>

struct FromTo

{

 int customer, from, to;

 T fixed;

};

// This struct is used for the centroids.

// Every centroid has an id, a x and a y coordinate

// Q and V that has been assigned to it and a phi_start

// and a phi_end angle to mark its region

struct Centre

{

 int id;

 double x, y; // cordinates

 double Q, V; // max and min turnover/visits accepted

 double phi_start, phi_end; // ranges from phi_start to phi_end

};

// This is the struct of the vehicle. A vehicle has an ID, a quantity Q

// (which is the turnover generated), a number of visits V, a min/max

// turnover (Qmin/Qmax) and a min/max number of visits that it should

// achieve

struct Vehicle

{

 int id;

 double Q, V;

 double Qmin, Qmax, Vmin, Vmax;

};

LIFE GreenYourRoute: A European innovative logistic platform for last mile
delivery of goods in urban environment

 Page | 20

// This function performs a statistical analysis prior to solving the problem

void performAnalysis(vector<Customer>&, Centre, ofstream&);

// This function performs the radar circular scanning

void radarScan(vector<Customer>&, vector<Vehicle>&, Centre&, ofstream&);

// This function assigns customers to vehicles

int assignCustomersToVehicles(vector<Customer>&, vector<Vehicle>&, double, double,

vector<FromTo<bool>>&, ofstream&);

// This function fixes overlaps between customers assigned to wrong vehicles

void fixOverlaps(vector<Customer>&, vector<Vehicle>&, vector<FromTo<bool>>&, bool,

ofstream&);

// This function is called to perform the k-means clustering

// It requires the customers, the customers assigned to vehicles, the information on which

clusters

// should be twinned, the current vehicle to cluster k, the number of Vehicles, Days and

Clusters;

void kmeans(vector<Customer>&, vector<Customer>&, vector <TwoNumbers<int> >&, int,

int, int, int);

// This function constructs and runs a MILP which schedules the daily assignments of

customers to vehicles/

// It requires the struct of customers, the structs if vehicles, the number of clusters, the

number of days and a stream for the Ouput file

int assignCustomersToDays(vector<Customer>&, vector<Vehicle>&, int, int, string, string,

string, ofstream&);

int main(int argc, char *argv[])

{

 system("CLS");

 srand(unsigned(time(NULL)));

 clock_t tStart = clock();

 // Data

 int nCustomers, nVehicles, nDays;

 bool geoDistribAbsolutePriority = false;

LIFE GreenYourRoute: A European innovative logistic platform for last mile
delivery of goods in urban environment

 Page | 21

 string NAME; // This is the name of the problem run following which the log file will

be created

 string sCust, sDP, sCP;

 // Read file with Preferences

 const std::string fnP = "Preferences.txt";

 // Input streams

 std::ifstream fP; // file stream for customers

 // Open files

 fP.open(fnP.c_str()); // open file and create stream for customers

 // Check if files exist

 if(!fP)

 {

 cout <<

"==" << endl

 << "| For AREA MANAGER to run properly, a file named " << endl

 << "| Preferences.txt is required. This file will look like:" << endl

 << "| " << endl

 << "| Name: MyInstance" << endl

 << "| nDays: 20" << endl

 << "| nVehicles: 12" << endl

 << "| varTurnover: 0.95" << endl

 << "| varVisits: 0.95 " << endl

 << "| varDayVisits: 0.95 " << endl

 << "|

Is_the_geographical_distribution_your_absolute_priority_(YES/NO): NO" << endl

 << "| InputFile_Days_Patterns: Input-DP.txt" << endl

 << "| InputFile_Customers_Patterns: Input-CP.txt" << endl

 << "| " << endl

 << "| Please create that file and place it at the" << endl

 << "| same directory with AREA MANAGER" << endl

 << "| Please enter your preferences right after the colons" << endl

LIFE GreenYourRoute: A European innovative logistic platform for last mile
delivery of goods in urban environment

 Page | 22

 << "| making sure that text before the colons is" << endl

 << "| identical to the text seen above." << endl

 << "| If not, then AREA MANAGER will not run properly" << endl

 << endl

 << "| Press any key to exit;" << endl

 <<

"==" << endl;

 getchar();

 return -1;

 }

 double varVisits, varTurnover;

 string line;

 while(std::getline(fP, line))

 {

 std::istringstream iss(line);

 size_t foundVarVisits = line.find("varVisits:");

 if (foundVarVisits!=string::npos)

 {

 string tmp;

 stringstream ss(line);

 iss >> tmp >> varVisits;

 continue;

 }

 size_t foundVarTurnover = line.find("varTurnover:");

 if (foundVarTurnover!=string::npos)

 {

 string tmp;

 stringstream ss(line);

 iss >> tmp >> varTurnover;

 continue;

LIFE GreenYourRoute: A European innovative logistic platform for last mile
delivery of goods in urban environment

 Page | 23

 }

 size_t foundnDays = line.find("nDays:");

 if (foundnDays!=string::npos)

 {

 string tmp;

 stringstream ss(line);

 iss >> tmp >> nDays;

 continue;

 }

 size_t foundnVehicles = line.find("nVehicles:");

 if (foundnVehicles!=string::npos)

 {

 string tmp;

 stringstream ss(line);

 iss >> tmp >> nVehicles;

 continue;

 }

 size_t foundNAME = line.find("Name:");

 if (foundNAME!=string::npos)

 {

 string tmp;

 stringstream ss(line);

 iss >> tmp >> NAME;

 continue;

 }

 size_t foundInFileCust = line.find("InputFile_Customers:");

 if (foundInFileCust!=string::npos)

 {

 string tmp;

 stringstream ss(line);

LIFE GreenYourRoute: A European innovative logistic platform for last mile
delivery of goods in urban environment

 Page | 24

 iss >> tmp >> sCust;

 continue;

 }

 size_t foundInFileDP = line.find("InputFile_Days_Patterns:");

 if (foundInFileDP!=string::npos)

 {

 string tmp;

 stringstream ss(line);

 iss >> tmp >> sDP;

 continue;

 }

 size_t foundInFileCP = line.find("InputFile_Customers_Patterns:");

 if (foundInFileCP!=string::npos)

 {

 string tmp;

 stringstream ss(line);

 iss >> tmp >> sCP;

 continue;

 }

 size_t foundGeoDistribution =

line.find("Is_the_geographical_distribution_your_absolute_priority_(YES/NO):");

 if (foundGeoDistribution!=string::npos)

 {

 string tmp;

 stringstream ss(line);

 iss >> tmp >> tmp;

 geoDistribAbsolutePriority = (tmp == "YES" || tmp == "1" || tmp ==

"TRUE");

 continue;

 }

 }

LIFE GreenYourRoute: A European innovative logistic platform for last mile
delivery of goods in urban environment

 Page | 25

 string NAMELOG = NAME + "-Progress.log";

 const char *fnNameLog = NAMELOG.c_str();

 ofstream fLog(fnNameLog);// std::ios_base::app);

 string NAMERESULTS = NAME + "-Results.log";

 string NAMECUSTASSIGN = NAME + "-Assignment.txt";

 const char *fnNameAssign = NAMECUSTASSIGN.c_str();

 cout << "=="

<< endl

 << "| AREA MANAGER is running... " << endl

 << "| using the input preferences found in Preferences.txt:" << endl

 << "|" << endl

 << "| Name: " << NAME << endl

 << "| nDays: " << nDays << endl

 << "| nVehicles: " << nVehicles << endl

 << "| varTurnover: " << varTurnover << endl

 << "| varVisits: " << varVisits << endl

 << "| Is_the_geographical_distribution_your_absolute_priority_(YES/NO): ";

 if(geoDistribAbsolutePriority)

 cout << "YES" << endl;

 else

 cout << "NO" << endl;

 cout << "| InputFile_Customers: " << sCust << endl

 << "| InputFile_Days_Patterns: " << sDP << endl

 << "| InputFile_Customers_Patterns: " << sCP << endl

 << "|" << endl

 << "| If you do not agree with some of the data or" << endl

 << "| preferences above, please stop execution (ctrl+c)," << endl

 << "| modify the file Preferences.txt and retry " << endl

 << "| " << endl

LIFE GreenYourRoute: A European innovative logistic platform for last mile
delivery of goods in urban environment

 Page | 26

 << "| Printing log information and results at files named:" << endl

 << "| " << NAMELOG << " and " << NAMERESULTS << endl

 << "| Please check progress in these files" << endl

 << "|" << endl

 << "| When finished, this window will close" << endl

 <<

"==" << endl;

 int problemSolved;

 bool firstPass = true;

 // Demand per customer

 // Number of total visits throughout horizon

 int nVisits = 0;

 // Coordinates for each customer - serve to calculate distances

 vector<TwoNumbers<double>> longlat;

 // Customers (this struct includes coorinates -x,y,phi, demand, vehicle and cluster

 vector<Customer> customer;

 // Vehicles

 vector<Vehicle> vehicle;

 // Input files

 const std::string fnC = sCust;//"Input-Customers.txt";

 // Input streams

 std::ifstream fC; // file stream for customers

 // Open files

 fC.open(fnC.c_str()); // open file and create stream for customers

 // Check if files existf

 if(!fC)

 {

 system("CLS");

 cout <<

"==" << endl

LIFE GreenYourRoute: A European innovative logistic platform for last mile
delivery of goods in urban environment

 Page | 27

 << "| AREA MANAGER stopped, because " << endl

 << "| " << fnC << " file has not been found" << endl

 << "| " << endl

 << "| Please make the encessary changes to the" << endl

 << "| Preferences.txt file and retry" << endl

 << "|" << endl

 << "| Press any key to exit;" << endl

 <<

"==" << endl;

 getchar();

 return 0;

 }

 ifstream check_sDP(sDP.c_str());

 if(!check_sDP)

 {

 system("CLS");

 cout <<

"==" << endl

 << "| AREA MANAGER stopped, because " << endl

 << "| " << sDP << " file has not been found" << endl

 << "| " << endl

 << "| Please make the necessary changes to the" << endl

 << "| Preferences.txt file and retry" << endl

 << "|" << endl

 << "| Press any key to exit;" << endl

 <<

"==" << endl;

 getchar();

 return 0;

 }

LIFE GreenYourRoute: A European innovative logistic platform for last mile
delivery of goods in urban environment

 Page | 28

 // Buffer variable

 std::string tmp;

 // Variable Q will store total turnover

 double Q = 0;

 // Read file

 // Here I read the first line of headers

 getline(fC, line);

 string Pelatis, X, Y, ArxikiAksia, Sixnotita;

 int iter = -1;

 Centre barycentre = {0, 0, 0, 0, 0};

 while(std::getline(fC, line))

 {

 std::istringstream iss(line);

 if(!line.empty())

 {

 iss >> Pelatis >> X >> Y >> ArxikiAksia >> Sixnotita;

 TwoNumbers<double> TN = {atof(X.c_str()), atof(Y.c_str())};

 longlat.push_back(TN);

 Customer next_customer = {atoi(Pelatis.c_str()), ++iter, atof(X.c_str()),

atof(Y.c_str()), atof(ArxikiAksia.c_str()), atoi(Sixnotita.c_str()), -1, -1, 0};

 customer.push_back(next_customer);

 barycentre.x += longlat[iter].a;

 barycentre.y += longlat[iter].b;

 nVisits += atoi(Sixnotita.c_str());

 Q += atoi(Sixnotita.c_str())*atof(ArxikiAksia.c_str());

 }

 }

 nCustomers = customer.size();

 for(int k=0; k<nVehicles; k++)

 {

LIFE GreenYourRoute: A European innovative logistic platform for last mile
delivery of goods in urban environment

 Page | 29

 Vehicle aVehicle = {k, 0, 0, varTurnover*Q/nVehicles, (2-

varTurnover)*Q/nVehicles, varVisits*nVisits/nVehicles, (2-varVisits)*nVisits/nVehicles};

 vehicle.push_back(aVehicle);

 }

 barycentre.x /= nCustomers;

 barycentre.y /= nCustomers;

 performAnalysis(customer, barycentre, fLog);

 fLog << endl << "Instance being solved" << endl;

 fLog << "# of customers................. " << nCustomers << endl;

 fLog << "# of vehicles.................. " << nVehicles << endl;

 fLog << "Var on visits/vehicle.......... " << varVisits*100 << "%" << endl;

 fLog << "Var on turnover................ " << varTurnover*100 << "%" << endl;

 fLog << endl;

 do

 {

 clock_t tCluster = clock();

 clock_t tRadar = clock();

 radarScan(customer, vehicle, barycentre, fLog);

 fLog << "Radar Scan lasted " << (double)(clock() - tRadar)/CLOCKS_PER_SEC

<< "sec" << endl;

 // Undo sorting by angle.

 // Sort customers based on the rank they were read initially from file (iter)

 // The following will NOT work, unless customers are sorted as originally

 // ranked when the file was read.

 std::sort(customer.begin(), customer.end(), asReadInFile);

 vector<FromTo<bool>> ft;

 clock_t tAssignCusttoVeh = clock();

 int nOverlaps = assignCustomersToVehicles(customer, vehicle, varVisits,

varTurnover, ft, fLog);

LIFE GreenYourRoute: A European innovative logistic platform for last mile
delivery of goods in urban environment

 Page | 30

 fLog << "Assignment of customers to vehicles lasted " << (double)(clock() -

tAssignCusttoVeh)/CLOCKS_PER_SEC << "sec" << endl;

 fLog << "During assignment of customers to vehicles " << nOverlaps << "

overlaps were identified" << endl;

 // If there exist any overlaps, identify them and fix them

 if(nOverlaps)

 {

 clock_t tFixing = clock();

 // IMPORTANT: For the fixOverlaps function to work, it is necessary

to

 // have the customers sorted by angle.

 std::sort(customer.begin(), customer.end(), smallerPhi);

 fixOverlaps(customer, vehicle, ft, geoDistribAbsolutePriority, fLog);

 fLog << "Fixing overlaps lasted " << (double)(clock() -

tFixing)/CLOCKS_PER_SEC << "sec" << endl;

 // Undo sorting by angle.

 // Sort customers based on the rank they were read initially when file

was read (by iter)

 std::sort(customer.begin(), customer.end(), asReadInFile);

 }

 ofstream fAssign(fnNameAssign);

 fAssign << "Customer" << " Vehicle" << endl;

 for(int i=0; i<nCustomers; i++)

 fAssign << customer[i].id << "\t" << customer[i].assignedTo+1 <<

endl;

 fLog << endl << "---> File " << NAMECUSTASSIGN << " has been created. It

contains the assignments of customers to vehicles" << endl;

 int nClusters = 5;

 clock_t tAsCustToDays = clock();

 problemSolved = assignCustomersToDays(customer, vehicle, nClusters,

nDays, NAME, sDP, sCP, fLog);

 fLog << "Assignment of customers to days lasted " << (double)(clock() -

tAsCustToDays)/CLOCKS_PER_SEC << "sec" << endl;

LIFE GreenYourRoute: A European innovative logistic platform for last mile
delivery of goods in urban environment

 Page | 31

 if(problemSolved == 1)

 {

 fLog << endl << endl;

 fLog << "Number of visits and value of order collected per vehicle

throughout the time horizon" << endl;

 for(int k=0; k<nVehicles; k++)

 fLog << "Vehicle " << k+1 << "\t Visits: " << vehicle[k].V << "\t

Value of order: " << vehicle[k].Q << endl;

 fLog << endl;

 fLog << endl << "Total runtime " << (double)(clock() -

tStart)/CLOCKS_PER_SEC << "sec" << endl;

 }

 } while(problemSolved == -1);

}

void fixOverlaps(vector<Customer> &customer, vector<Vehicle> &vehicle,

vector<FromTo<bool>> &ft, bool geoDistribAbsolutePriority, ofstream &fLog)

{

 fLog << endl << "Fixing overlaps " << endl;

 bool successfulFix = true;

 int nCustomers = customer.size();

 int nVehicles = vehicle.size();

 int nOverlaps = ft.size();

 double *q = new double [nCustomers];

 int *f = new int [nCustomers];

 for(int i=0; i<nCustomers; i++)

 {

 int ii = customer[i].iter;

 double qq = customer[i].q;

 int ff = customer[i].f;

LIFE GreenYourRoute: A European innovative logistic platform for last mile
delivery of goods in urban environment

 Page | 32

 q[ii] = qq;

 f[ii] = ff;

 }

 int noVar = -1;

 int *varZ;

 double *objective, *col_lb, *col_ub, *row_lb, *row_ub;

 int nCols = nOverlaps;

 int nRows = nVehicles+nVehicles;

 varZ = new int [nCols];

 objective = new double [nCols];

 col_lb = new double [nCols];

 col_ub = new double [nCols];

 row_lb = new double [nRows];

 row_ub = new double [nRows];

 OsiSolverInterface *model = new OsiClpSolverInterface();

 for(int i=0; i<nOverlaps; i++)

 {

 varZ[i] = ++noVar;

 col_lb[noVar] = 0;

 col_ub[noVar] = 1;

 objective[noVar] = -1;

 }

 CoinPackedMatrix * matrix = new CoinPackedMatrix(false, 0,0);

 matrix->setDimensions(0, noVar+1);

 int noCtr = -1;

 for(int k=0; k<nVehicles; k++)

 {

 ++noCtr;

 row_lb[noCtr] = vehicle[k].Qmin-vehicle[k].Q;

 row_ub[noCtr] = vehicle[k].Qmax-vehicle[k].Q;

LIFE GreenYourRoute: A European innovative logistic platform for last mile
delivery of goods in urban environment

 Page | 33

 CoinPackedVector row;

 for(int i=0; i<nOverlaps; i++)

 {

 int customerWhoRequests = ft[i].customer;

 if(ft[i].from == k)

 row.insert(varZ[i], -

1*q[customerWhoRequests]*f[customerWhoRequests]);

 else if(ft[i].to == k)

 row.insert(varZ[i],

q[customerWhoRequests]*f[customerWhoRequests]);

 }

 matrix->appendRow(row);

 }

 for(int k=0; k<nVehicles; k++)

 {

 ++noCtr;

 row_lb[noCtr] = vehicle[k].Vmin-vehicle[k].V;

 row_ub[noCtr] = vehicle[k].Vmax-vehicle[k].V;

 CoinPackedVector row;

 for(int i=0; i<nOverlaps; i++)

 {

 int customerWhoRequests = ft[i].customer;

 if(ft[i].from == k)

 row.insert(varZ[i], -1*f[customerWhoRequests]);

 else if(ft[i].to == k)

 row.insert(varZ[i], f[customerWhoRequests]);

 }

 matrix->appendRow(row);

 }

 model->loadProblem(*matrix, col_lb, col_ub, objective, row_lb, row_ub);

 fLog << "Number of variables: " << model->getNumCols() << endl

LIFE GreenYourRoute: A European innovative logistic platform for last mile
delivery of goods in urban environment

 Page | 34

 << "Number of constraints: " << model->getNumRows() << endl

 << "Number of variables: " << model->getNumElements() << endl;

 model->setHintParam(OsiDoReducePrint,true, OsiHintDo);

 for(int i=0; i<nOverlaps; i++)

 model->setInteger(varZ[i]);

 CbcModel BB(*model);

 CbcHeuristicFPump *heur1 = new CbcHeuristicFPump();

 BB.addHeuristic(heur1);

 BB.setLogLevel(0);

 BB.setAllowableFractionGap(0.1);

 BB.branchAndBound();

 delete heur1;

 if(BB.isProvenOptimal())

 {

 int nOverlapsFixed = 0;

 const double *solution = BB.bestSolution();

 for(int i=0; i<nOverlaps; i++)

 {

 if(solution[varZ[i]] > 10e-5)

 {

 ft[i].fixed = true;

 nOverlapsFixed++;

 int from = ft[i].from;

 int to = ft[i].to;

 for(int ii=0; ii<nCustomers; ii++)

 {

 if(customer[ii].iter == ft[i].customer)

 {

 customer[ii].assignedTo = ft[i].to;

 vehicle[from].V -= customer[ii].f;

LIFE GreenYourRoute: A European innovative logistic platform for last mile
delivery of goods in urban environment

 Page | 35

 vehicle[from].Q -= customer[ii].f*customer[ii].q;

 vehicle[to].V += customer[ii].f;

 vehicle[to].Q += customer[ii].f*customer[ii].q;

 }

 }

 }

 else

 {

 if(!geoDistribAbsolutePriority)

 ft[i].fixed = false;

 else

 {

 // If geographic distribution is of absolute priority, then

change vehicles for the wrongly assigned

 //fLog << endl << "Since you have asked for absolute

 ft[i].fixed = true;

 int from = ft[i].from;

 int to = ft[i].to;

 for(int ii=0; ii<nCustomers; ii++)

 {

 if(customer[ii].iter == ft[i].customer)

 {

 customer[ii].assignedTo = ft[i].to;

 vehicle[from].V -= customer[ii].f;

 vehicle[from].Q -=

customer[ii].f*customer[ii].q;

 vehicle[to].V += customer[ii].f;

 vehicle[to].Q +=

customer[ii].f*customer[ii].q;

 }

 }

LIFE GreenYourRoute: A European innovative logistic platform for last mile
delivery of goods in urban environment

 Page | 36

 }

 }

 }

 }

 fLog << nOverlaps << " overlaps were fixed" << endl;

 delete [] q;

 delete [] f;

 delete model;

 delete matrix;

 delete [] varZ;

 delete [] objective;

 delete [] col_lb;

 delete [] col_ub;

 delete [] row_lb;

 delete [] row_ub;

}

 int assignCustomersToDays(vector<Customer> &customer, vector<Vehicle>

&vehicle, int nClusters, int nDays, string NAME, string sDP, string sCP, ofstream &fLog)

 {

 fLog << endl << "Assignment of customers to days" << endl;

 std::sort(customer.begin(), customer.end(), asReadInFile);

 int successfulAssignment = 1;

 int nOverlaps = 0;

 string NAMERESULTS = NAME + "-Results.txt";

 const char *fnResults = NAMERESULTS.c_str();

 ofstream fout(fnResults);

 int nVehicles = vehicle.size();

 int nVisits = (int) vehicle[0].Vmax;

 vector<int> maxOvertime;

LIFE GreenYourRoute: A European innovative logistic platform for last mile
delivery of goods in urban environment

 Page | 37

 vector<int> M;

 vector<int> freqOfPattern;

 int nFailures;

 std::ifstream fM;

 std::ifstream fO;

 fM.open(sDP.c_str());

 fO.open(sCP.c_str());

 // Continue reading the input files

 int _r = -1;

 string line;

 while(std::getline(fM, line))

 {

 std::istringstream iss(line);

 if(!line.empty())

 {

 string _freq;

 iss >> _freq;

 char *dest = new char [10];

 if(std::strcmp(_freq.c_str(),dest) != 0)

 {

 freqOfPattern.push_back(atoi(_freq.substr(2,2).c_str()));

 _r++;

 for(int t=0; t<nDays; t++)

 {

 int isDayCompatibleWithPattern;

 iss >> isDayCompatibleWithPattern;

 if(isDayCompatibleWithPattern != 1 &&

isDayCompatibleWithPattern != 0)

 fLog << "File not read properly" << endl;

 int index = calc_Index(_r, t, nDays);

LIFE GreenYourRoute: A European innovative logistic platform for last mile
delivery of goods in urban environment

 Page | 38

 M.push_back(isDayCompatibleWithPattern);

 }

 }

 delete [] dest;

 }

 }

 int nPatterns = M.size()/nDays;

 for(int k=0; k<nVehicles; k++)

 {

 clock_t tVeh = clock();

 fLog << "For vehicle " << k+1 << ":" << endl;

 if(successfulAssignment == 1)

 nFailures = 0;

 vector<double> q;

 vector<int> f;

 // For every k we will solve an LP

 // But the variables relating to the customers

 // should correspond only to the customers assigned

 // to the vehicle k. We thus need a way to map

 // customers from the struct "customers" to the variables

 // 1...nCustomers*nPatterns, where nCustomers are the

 // customers assigned to vehicle k

 vector<int> translate;

 // We assume that customers are sorted by ID.

 // translate[i] will contain the id of the customer

 // behind the varX[i] variable

 vector<Customer> CustomersAssignedToVehicle;

 for(unsigned int i=0; i<customer.size(); i++)

 {

 if(customer[i].assignedTo == k)

LIFE GreenYourRoute: A European innovative logistic platform for last mile
delivery of goods in urban environment

 Page | 39

 {

 CustomersAssignedToVehicle.push_back(customer[i]);

 translate.push_back(customer[i].id);

 f.push_back(customer[i].f);

 q.push_back(customer[i].q);

 }

 }

 int nCustomers = q.size();

 // Cluster then assign.

 // 1st step: Clustet, using the k-means

 vector <TwoNumbers<int> > twinClusters;

 kmeans(customer, CustomersAssignedToVehicle, twinClusters, k, nVehicles,

nDays, nClusters);

 // Vector L will contain values "true" if i-customer

 // belongs in l-cluster of k-vehicle and "false" if not.

 vector<bool> L;

 for(int i=0; i<nCustomers*nClusters; i++)

 L.push_back(false);

 for(int i=0; i<nCustomers; i++)

 {

 int j = CustomersAssignedToVehicle[i].clusteredTo;

 int index = calc_Index(i, j, nClusters);

 L[index] = true;

 int ii = CustomersAssignedToVehicle[i].iter;

 }

 // 2nd Step: Assign using MILP

 // Assistant matrix O: Shows whether pattern r is compatible with customer i

 vector<int> O;

 for(int r=0; r<nPatterns; r++)

 {

LIFE GreenYourRoute: A European innovative logistic platform for last mile
delivery of goods in urban environment

 Page | 40

 int ii = -1;

 for(unsigned i=0; i<customer.size(); i++)

 {

 if(customer[i].assignedTo == k)

 {

 if(f[++ii] == freqOfPattern[r])

 O.push_back(1);

 else

 O.push_back(0);

 }

 }

 }

 int noVar = -1;

 int *varX, *varZ, *varUunder, *varUover, *varV, *ctrDayVisits;

 double *objective, *col_lb, *col_ub, *row_lb, *row_ub;

 int nCols =

nCustomers*nPatterns+nDays*nClusters+nDays+nDays*twinClusters.size();

 int nRows =

nCustomers+nDays+2*nDays*nClusters+(1+twinClusters.size())*nDays;

 varX = new int [nCustomers*nPatterns];

 varZ = new int [nDays*nClusters];

 varUunder = new int [nDays];

 varUover = new int [nDays];

 varV = new int [nDays*twinClusters.size()];

 ctrDayVisits = new int [nDays];

 objective = new double [nCols];

 col_lb = new double [nCols];

 col_ub = new double [nCols];

 row_lb = new double [nRows];

 row_ub = new double [nRows];

 // I want to be sure that all the above are zero'ed just in case

LIFE GreenYourRoute: A European innovative logistic platform for last mile
delivery of goods in urban environment

 Page | 41

 for(int col=0; col<nCols; col++)

 {

 objective[col] = 0;

 col_lb[col] = 0;

 col_ub[col] = 0;

 }

 for(int row=0; row<nRows; row++)

 {

 row_lb[row] = 0;

 row_ub[row] = 0;

 }

 OsiSolverInterface *model = new OsiClpSolverInterface();

 for(int i=0; i<nCustomers; i++)

 {

 for(int r=0; r<nPatterns; r++)

 {

 int index = calc_Index(r, i, nCustomers);

 if(O[index])

 {

 int index = calc_Index(i, r, nPatterns);

 varX[index] = ++noVar;

 col_lb[noVar] = 0;

 col_ub[noVar] = 1;

 objective[noVar] = 0;

 }

 }

 }

 for(int t=0; t<nDays; t++)

 {

LIFE GreenYourRoute: A European innovative logistic platform for last mile
delivery of goods in urban environment

 Page | 42

 for(int j=0; j<nClusters; j++)

 {

 int index = calc_Index(t, j, nClusters);

 varZ[index] = ++noVar;

 col_lb[noVar] = 0;

 col_ub[noVar] = 1;

 objective[noVar] = 1;

 }

 }

 for(int t=0; t<nDays; t++)

 {

 varUunder[t] = ++noVar;

 col_lb[noVar] = 0;

 col_ub[noVar] = (0.3+(double)

nFailures/20.0)*vehicle[0].Vmin/nDays;

 objective[noVar] = 1;

 varUover[t] = ++noVar;

 col_lb[noVar] = 0;

 col_ub[noVar] = (0.3+(double)

nFailures/20.0)*vehicle[0].Vmin/nDays;

 objective[noVar] = 1;

 }

 for(int t=0; t<nDays; t++)

 {

 for(unsigned j=0; j<twinClusters.size(); j++)

 {

 int index = calc_Index(t, j, twinClusters.size());

 varV[index] = ++noVar;

 col_lb[noVar] = 0;

 col_ub[noVar] = 1;

 objective[noVar] = 0;

LIFE GreenYourRoute: A European innovative logistic platform for last mile
delivery of goods in urban environment

 Page | 43

 }

 }

 CoinPackedMatrix * matrix = new CoinPackedMatrix(false, 0,0);

 matrix->setDimensions(0, noVar+1);

 int noCtr = -1;

 // Constraint #1: Assign customers to patterns

 for(int i=0; i<nCustomers; i++)

 {

 ++noCtr;

 row_lb[noCtr] = 1;

 row_ub[noCtr] = 1;

 CoinPackedVector row;

 for(int r=0; r<nPatterns; r++)

 {

 int index = calc_Index(r, i, nCustomers);

 if(O[index])

 {

 int index = calc_Index(i, r, nPatterns);

 row.insert(varX[index], 1);

 }

 }

 matrix->appendRow(row);

 }

 // Constraint #2: Number of visits should be bounded but

 // to ensure feasibility we allow a slack variable U(t) per day

 for(int t=0; t<nDays; t++)

 {

 ctrDayVisits[t] = ++noCtr;

 row_lb[noCtr] = vehicle[0].Vmin/nDays;

 row_ub[noCtr] = vehicle[0].Vmax/nDays;

LIFE GreenYourRoute: A European innovative logistic platform for last mile
delivery of goods in urban environment

 Page | 44

 CoinPackedVector row;

 for(int i=0; i<nCustomers; i++)

 {

 for(int r=0; r<nPatterns; r++)

 {

 int index1 = calc_Index(r, i, nCustomers);

 int index2 = calc_Index(r, t, nDays);

 if(O[index1] && M[index2])

 {

 int index = calc_Index(i, r, nPatterns);

 row.insert(varX[index], 1);

 }

 }

 }

 row.insert(varUover[t], -1);

 row.insert(varUunder[t], 1);

 matrix->appendRow(row);

 }

 // Constraint #3: Assign clusters to days

 for(int t=0; t<nDays; t++)

 {

 // First constraint:

 // Instead of z1+z2+z3+..+zn <= 1

 // substitute pairs of z which are twins with v

 // for instance if 1 and 2 are twins

 // and also say 4 and 6 are twins

 // then v1+z3+v2+...+zn <= 1

 ++noCtr;

 row_lb[noCtr] = 1;//-1*model->getInfinity();

 row_ub[noCtr] = 1;

LIFE GreenYourRoute: A European innovative logistic platform for last mile
delivery of goods in urban environment

 Page | 45

 CoinPackedVector row;

 // If a cluster is not in twinsCluster

 // then it is represented by the z variable.

 // If it is then the two clusters of the pair are

 // represented by the v variable.

 for(int j=0; j<nClusters; j++)

 {

 bool isTwinned = false;

 for(unsigned jj=0; jj<twinClusters.size(); jj++)

 if(twinClusters[jj].a == j || twinClusters[jj].b == j)

 {

 isTwinned = true;

 break;

 }

 if(!isTwinned)

 {

 int index = calc_Index(t, j, nClusters);

 row.insert(varZ[index], 1);

 }

 }

 for(unsigned j=0; j<twinClusters.size(); j++)

 {

 int index = calc_Index(t, j, twinClusters.size());

 row.insert(varV[index], 1);

 }

 matrix->appendRow(row);

 // Constraint #4: Link z to v

 // Second constraint:

 // For every pair of twins regulate whether they are allowed to take

the value of 0 or 1

LIFE GreenYourRoute: A European innovative logistic platform for last mile
delivery of goods in urban environment

 Page | 46

 // For instance: z0+z1 <= 2u1

 // OR if z0 appears in say two pairs then:

 // z0 + z1 <= 2v1 + v2

 // z1 + z2 <= v1 + 2v2

 for(unsigned j=0; j<twinClusters.size(); j++)

 {

 // We run the list of twinClusters

 int p1 = twinClusters[j].a;

 int p2 = twinClusters[j].b;

 // Here starts the constraint

 ++noCtr;

 row_lb[noCtr] = -1*model->getInfinity();

 row_ub[noCtr] = 0;

 CoinPackedVector row;

 // Follow the variables Z related to the clusters p1 and p2 in the

list

 int index1 = calc_Index(t, p1, nClusters);

 row.insert(varZ[index1], 1);

 int index2 = calc_Index(t, p2, nClusters);

 row.insert(varZ[index2], 1);

 // The variable V corresponding to this pair of twins

 int index3 = calc_Index(t, j, twinClusters.size());

 row.insert(varV[index3], -2);

 // We search whether any of the two twins (p1 or p2) appear in

any other row

 for(unsigned jj=0; jj<twinClusters.size(); jj++)

 {

 if(jj != j)

 {

 if(twinClusters[jj].a == p1

 || twinClusters[jj].b == p1

LIFE GreenYourRoute: A European innovative logistic platform for last mile
delivery of goods in urban environment

 Page | 47

 || twinClusters[jj].a == p2

 || twinClusters[jj].b == p2)

 {

 int index = calc_Index(t, jj,

twinClusters.size());

 row.insert(varV[index], -2);

 }

 }

 }

 matrix->appendRow(row);

 }

 }

 // Constraint #5: Assign clusters to days

 for(int t=0; t<nDays; t++)

 {

 for(int j=0; j<nClusters; j++)

 {

 ++noCtr;

 row_lb[noCtr] = -1*model->getInfinity();

 row_ub[noCtr] = 0;

 CoinPackedVector row;

 for(int i=0; i<nCustomers; i++)

 {

 for(int r=0; r<nPatterns; r++)

 {

 int index1 = calc_Index(r, t, nDays);

 int index2 = calc_Index(r, i, nCustomers);

 int index3 = calc_Index(i, j, nClusters);

 if(M[index1] && O[index2] && L[index3])

 {

LIFE GreenYourRoute: A European innovative logistic platform for last mile
delivery of goods in urban environment

 Page | 48

 int index = calc_Index(i, r, nPatterns);

 row.insert(varX[index], 1);

 }

 }

 }

 int index = calc_Index(t, j, nClusters);

 row.insert(varZ[index], -1*bigM);

 matrix->appendRow(row);

 }

 }

 model->loadProblem(*matrix, col_lb, col_ub, objective, row_lb, row_ub);

 fLog << "Number of variables: " << model->getNumCols() << endl

 << "Number of constraints: " << model->getNumRows() << endl

 << "Number of variables: " << model->getNumElements() << endl;

 model->setHintParam(OsiDoReducePrint,true, OsiHintDo);

 for(int i=0; i<nCustomers; i++)

 {

 for(int r=0; r<nPatterns; r++)

 {

 int index = calc_Index(r, i, nCustomers);

 if(O[index])

 {

 int index = calc_Index(i, r, nPatterns);

 model->setInteger(varX[index]);

 }

 }

 }

 for(int t=0; t<nDays; t++)

 {

 for(int j=0; j<nClusters; j++)

LIFE GreenYourRoute: A European innovative logistic platform for last mile
delivery of goods in urban environment

 Page | 49

 {

 int index = calc_Index(t, j, nClusters);

 model->setInteger(varZ[index]);

 }

 }

 for(int t=0; t<nDays; t++)

 {

 for(unsigned j=0; j<twinClusters.size(); j++)

 {

 int index = calc_Index(t, j, twinClusters.size());

 model->setInteger(varV[index]);

 }

 }

 CbcModel BB(*model);

 CbcHeuristicFPump *heur1 = new CbcHeuristicFPump();

 CbcRounding *heur2 = new CbcRounding();

 BB.addHeuristic(heur1);

 BB.addHeuristic(heur2);

 if(BB.getNumElements() < 0.3*(noCtr+1)*(noVar+1))

 BB.solver()->setHintParam(OsiDoPresolveInInitial,true);

 else

 BB.solver()->setHintParam(OsiDoPresolveInInitial,false);

 BB.setMaximumSeconds(120);

 BB.setLogLevel(0);

 BB.setAllowableGap(nDays*15);

 BB.setAllowableFractionGap(1);

 BB.branchAndBound();

 //if(k==0 && successfulAssignment==1)

 // fLog << "#Visits(avg=" << (int) vehicle[k].Vmax/nDays << "): ";

 if(BB.isProvenOptimal())

LIFE GreenYourRoute: A European innovative logistic platform for last mile
delivery of goods in urban environment

 Page | 50

 {

 successfulAssignment = 1;

 nOverlaps += (int) BB.getObjValue();

 const double *solution = BB.bestSolution();

 int maxOT= 0;

 for(int t=0; t<nDays; t++)

 {

 int var = varUover[t];

 if((int) solution[var] > maxOT)

 maxOT = (int) solution[var];

 }

 maxOT += (int) vehicle[k].Vmax/nDays;

 maxOvertime.push_back(maxOT);

 for(int t=0; t<nDays; t++)

 {

 fout << "D" << t+1 << "V" << k+1 << " ";

 for(int r=0; r<nPatterns; r++)

 {

 int index = calc_Index(r, t, nDays);

 if(M[index])

 {

 for(int i=0; i<nCustomers; i++)

 {

 int index = calc_Index(r, i, nCustomers);

 if(O[index])

 {

 int index = calc_Index(i, r,

nPatterns);

 int var = varX[index];

 if(solution[var] > 0.1)

LIFE GreenYourRoute: A European innovative logistic platform for last mile
delivery of goods in urban environment

 Page | 51

 {

 fout << translate[i] << " ";

 for(unsigned ii=0;

ii<customer.size(); ii++)

 if(customer[ii].id

== translate[i])

 {

 break;

 }

 }

 }

 }

 }

 }

 fout << endl;

 }

 }

 else if(BB.isProvenInfeasible())

 successfulAssignment = 0;

 else

 {

 // time is up

 successfulAssignment = 0;

 }

 delete heur1;

 delete model;

 delete matrix;

 delete [] varX;

 delete [] varZ;

 delete [] varUunder;

LIFE GreenYourRoute: A European innovative logistic platform for last mile
delivery of goods in urban environment

 Page | 52

 delete [] varUover;

 delete [] varV;

 delete [] objective;

 delete [] col_lb;

 delete [] col_ub;

 delete [] row_lb;

 delete [] row_ub;

 delete [] ctrDayVisits;

 if(successfulAssignment == 1)

 {

 fLog << "Max number of visits per day: " << maxOvertime[k]+1

<< endl;

 if(maxOvertime[k] >= 1.5*(int) vehicle[k].Vmax/nDays)

 successfulAssignment = 0;

 }

 fLog << "Assigning customers to days for vehicle " << k+1 << " lasted " <<

(double)(clock() - tVeh)/CLOCKS_PER_SEC << "sec";

 if(!BB.isProvenOptimal())

 fLog << " but will start again either because problem was infeasible or

time is up (more than 2min)";

 fLog << endl;

 if(successfulAssignment == 0)

 {

 k--;

 nFailures++;

 if(nFailures == 5)

 successfulAssignment = -1;

 }

 if(successfulAssignment == -1)

 break;

 }

LIFE GreenYourRoute: A European innovative logistic platform for last mile
delivery of goods in urban environment

 Page | 53

 return successfulAssignment;

 }

void kmeans(vector<Customer> &customer, vector<Customer>

&CustomersAssignedToVehicle, vector <TwoNumbers<int> > &twinClusters, int k, int

nVehicles, int nDays, int nClusters)

{

 int nkCustomers = CustomersAssignedToVehicle.size();

 // Clustering of the customers per vehicle using k-means k=5

 bool kmeansConverges = false; // k-means will not converge if it will take it more

than 100 iterations

 while(!kmeansConverges)

 {

 if(twinClusters.size())

 twinClusters.erase(twinClusters.begin(),twinClusters.end());

 // This 2D-vector will contain all i customers assigned to every j cluster of this

vehicle

 vector < vector<Customer> > CustomersAssignedToClusters;

 int nVisits = 0;

 for(int i=0; i<nkCustomers; i++)

 nVisits += CustomersAssignedToVehicle[i].f;

 int minAcceptedSizeOfCluster = 2*nVisits/nDays; //min(2*nVisits/nDays,

nkCustomers/nClusters);

 // kmeans starts here

 // 1. Initially find k random points = seeds to start with

 // This vector will include the centroids (id, lat, long) of all clusters of this

vehicle

 vector<Centre> CentroidsOfClusters;

 for(int j=0; j<nClusters; j++)

 {

 int seed = rand()%nkCustomers;

LIFE GreenYourRoute: A European innovative logistic platform for last mile
delivery of goods in urban environment

 Page | 54

 // Start with a seed, but make sure you do not select an already selected

one

 while(std::find_if(CentroidsOfClusters.begin(),

CentroidsOfClusters.end(), MatchesID(CustomersAssignedToVehicle[seed].id)) !=

CentroidsOfClusters.end())

 seed = rand()%nkCustomers;

 Centre aCentroid = {CustomersAssignedToVehicle[seed].id,

CustomersAssignedToVehicle[seed].x, CustomersAssignedToVehicle[seed].y, 0, 0, 0, 0};

 CentroidsOfClusters.push_back(aCentroid);

 }

 // The "stop" criterion will turn true either when algorithm does not converge

 // after 100 iterations or when it has converged

 bool stop = false;

 // We keep track of the iterations. If more than 100, then we stop and repeat

 // the procedure with another set of seeds

 int nIterations = 0;

 while(!stop)

 {

 // Assign customers to clusters based on their distance from centroids

 for(int i=0; i<nkCustomers; i++) // Memo: nkCustomers is

CustomersAssignedToVehicle.size();

 {

 // This is the closest_cluster to the customer

 int closest_cluster;

 double min = 10e10;

 for(int j=0; j<nClusters; j++)

 {

 double dist = sqrt((CustomersAssignedToVehicle[i].x-

CentroidsOfClusters[j].x)*(CustomersAssignedToVehicle[i].x-CentroidsOfClusters[j].x)

 +(CustomersAssignedToVehicle[i].y-

CentroidsOfClusters[j].y)*(CustomersAssignedToVehicle[i].y-CentroidsOfClusters[j].y));

 if(dist < min)

LIFE GreenYourRoute: A European innovative logistic platform for last mile
delivery of goods in urban environment

 Page | 55

 {

 min = dist;

 closest_cluster = j;

 }

 }

 // This customer is assigned to closest_cluster (this may change

in the next iteration)

 CustomersAssignedToVehicle[i].clusteredTo = closest_cluster;

 }

 // Calculate new centroids

 int votesToStop = 0;

 for(int j=0; j<nClusters; j++)

 {

 // This is a temporary cluster created to be appended to

 // the 2D vector CustomersAssignedToClusters

 vector<Customer> aCluster;

 double temp_x = 0;

 double temp_y = 0;

 for(int i=0; i<nkCustomers; i++)

 {

 if(CustomersAssignedToVehicle[i].clusteredTo == j)

 {

 aCluster.push_back(CustomersAssignedToVehicle[i]);

 temp_x += CustomersAssignedToVehicle[i].x;

 temp_y += CustomersAssignedToVehicle[i].y;

 }

 }

 // Vote to stop: One vote is cast

 if(abs(CentroidsOfClusters[j].x - temp_x/aCluster.size())<0.001

&& abs(CentroidsOfClusters[j].y - temp_y/aCluster.size())<0.001)

LIFE GreenYourRoute: A European innovative logistic platform for last mile
delivery of goods in urban environment

 Page | 56

 votesToStop++;

 CentroidsOfClusters[j].x = temp_x/aCluster.size();

 CentroidsOfClusters[j].y = temp_y/aCluster.size();

 if(aCluster.size())

 CustomersAssignedToClusters.push_back(aCluster);

 }

 if(votesToStop == nClusters)

 stop = true;

 if(++nIterations > 100)

 {

 // k-means did not converge (usually at more than 100

iterations, smt is wrong)

 kmeansConverges = false;

 // Stop and restart...

 stop = true;

 // ... clustering for the same k-vehicle

 k--;

 }

 else

 kmeansConverges = true;

 }

 // if kmeans converges means that we have nClusters for the k-vehicle

 // that will not change. So I can now updated everything

 if(kmeansConverges)

 {

 // Update the struct customers to include clusters

 for(int i=0; i<nkCustomers; i++)

 {

 int ii = CustomersAssignedToVehicle[i].iter;

 customer[ii].clusteredTo =

CustomersAssignedToVehicle[i].clusteredTo;

LIFE GreenYourRoute: A European innovative logistic platform for last mile
delivery of goods in urban environment

 Page | 57

 }

 // Build twinClusters matrix:

 // If a cluster is too small => nVisits <= Vmax/nDays,

 // then it needs to be twinned with a close cluster

 // Later on, we will allow overlaps between these two clusters

 vector <int> visitsAtCluster;

 // This vector will show whether cluster j has been twinned already or

not

 vector <int> isTwinned;

 for(int j1=0; j1<nClusters; j1++)

 {

 // If a cluster is small...

 if((int) CustomersAssignedToClusters[j1].size() <

minAcceptedSizeOfCluster

 && std::find(isTwinned.begin(), isTwinned.end(), j1) ==

isTwinned.end())

 {

 isTwinned.push_back(j1);

 int combinedVisits =

CustomersAssignedToClusters[j1].size();

 while(combinedVisits < minAcceptedSizeOfCluster)

 {

 // .. then find the closest cluster to this one

 double min = 10e10;

 int closest_cluster;

 for(int j2=0; j2<nClusters; j2++)

 {

 if(std::find(isTwinned.begin(),

isTwinned.end(), j2) == isTwinned.end())

 {

LIFE GreenYourRoute: A European innovative logistic platform for last mile
delivery of goods in urban environment

 Page | 58

 double dist =

sqrt((CentroidsOfClusters[j1].x-CentroidsOfClusters[j2].x)*(CentroidsOfClusters[j1].x-

CentroidsOfClusters[j2].x)

 +(CentroidsOfClusters[j1].y-CentroidsOfClusters[j2].y)*(CentroidsOfClusters[j1].y-

CentroidsOfClusters[j2].y));

 if(dist < min)

 {

 min = dist;

 closest_cluster = j2;

 }

 }

 }

 combinedVisits +=

CustomersAssignedToClusters[closest_cluster].size();

 TwoNumbers<int> twoClusters = {j1,

closest_cluster};

 twinClusters.push_back(twoClusters);

 isTwinned.push_back(closest_cluster);

 }

 }

 }

 }

 }

}

void performAnalysis(vector<Customer> &customer, Centre barycentre, ofstream &fLog)

{

 double avgTurnover = 0;

 int nCustomers = customer.size();

LIFE GreenYourRoute: A European innovative logistic platform for last mile
delivery of goods in urban environment

 Page | 59

 for(int i=0; i<nCustomers; i++)

 avgTurnover += customer[i].q;

 avgTurnover /= nCustomers;

 double stdvTurnover = 0;

 for(int i=0; i<nCustomers; i++)

 stdvTurnover += (customer[i].q - avgTurnover)*(customer[i].q - avgTurnover);

 stdvTurnover = sqrt(stdvTurnover/nCustomers);

 vector<Customer> suspiciousCustTurnover;

 for(int i=0; i<nCustomers; i++)

 {

 if(customer[i].q > avgTurnover+2*stdvTurnover)

 suspiciousCustTurnover.push_back(customer[i]);

 }

 int nSuspCustTO = suspiciousCustTurnover.size();

 fLog << "While the average value of orders is " << avgTurnover;

 if(stdvTurnover/avgTurnover > 1)

 fLog << " (albeit highly volatile) ";

 fLog << "the following customers have extremely higher value of order" << endl;

 std::sort(suspiciousCustTurnover.begin(), suspiciousCustTurnover.end(),

higherTurnover);

 for(int i=0; i<nSuspCustTO; i++)

 fLog << "Customer ID: " << suspiciousCustTurnover[i].id << " Turnover: " <<

suspiciousCustTurnover[i].q << endl;

 double avgDist = 0;

 for(int i=0; i<nCustomers; i++)

 {

 double dist = sqrt((customer[i].x-barycentre.x)*(customer[i].x-barycentre.x) +

 (customer[i].y-barycentre.y)*(customer[i].y-barycentre.y));

 avgDist += dist;

 }

LIFE GreenYourRoute: A European innovative logistic platform for last mile
delivery of goods in urban environment

 Page | 60

 avgDist /= nCustomers;

 double stdvDist = 0;

 vector<TwoNumbers<double>> custDist;

 for(int i=0; i<nCustomers; i++)

 {

 double dist = sqrt((customer[i].x-barycentre.x)*(customer[i].x-barycentre.x) +

 (customer[i].y-barycentre.y)*(customer[i].y-barycentre.y));

 stdvDist += (dist-avgDist)*(dist-avgDist);

 TwoNumbers<double> aCustDist= {customer[i].id, dist};

 custDist.push_back(aCustDist);

 }

 stdvDist = sqrt(stdvDist/nCustomers);

 vector<TwoNumbers<double>> suspiciousCustDist;

 for(int i=0; i<nCustomers; i++)

 {

 if(custDist[i].b > avgDist+2*stdvDist)

 suspiciousCustDist.push_back(custDist[i]);

 }

 int nSuspCustDist = suspiciousCustDist.size();

 fLog << "The following customers are far away from the centre of all points" << endl;

 for(int i=0; i<nSuspCustTO; i++)

 fLog << "Customer ID: " << suspiciousCustDist[i].a << endl;

}

void radarScan(vector<Customer> &customer, vector<Vehicle> &vehicle, Centre

&barycentre, ofstream &fLog)

{

 fLog << "Cluster nodes to vehicles with Radar Scan" << endl;

 int nCustomers = customer.size();

 int nVehicles = vehicle.size();

 // Calculate angles phi

LIFE GreenYourRoute: A European innovative logistic platform for last mile
delivery of goods in urban environment

 Page | 61

 double min = 10e10;

 int bestSeed;

 int nVisits = 0;

 for(int i=0; i<nCustomers; i++)

 nVisits += customer[i].f;

 for(int seed=0; seed<nCustomers; seed++)

 {

 std::sort(customer.begin(), customer.end(), asReadInFile);

 Centre p = {0, customer[seed].x, customer[seed].y, 0, 0};

 double zx0 = p.x - barycentre.x;

 double zy0 = p.y - barycentre.y;

 for(int i=0; i<nCustomers; i++)

 {

 double zxi = customer[i].x - barycentre.x;

 double zyi = customer[i].y - barycentre.y;

 double dot = zxi*zx0 + zyi*zy0;

 double pcross = -zx0*zyi + zxi*zy0;

 customer[i].phi = atan2(pcross, dot)*180/3.1415;

 }

 // Clustering following phi angle

 for(int k=0; k<nVehicles; k++)

 {

 vehicle[k].Q = 0;

 vehicle[k].V = 0;

 }

 // Sort customers based on their angle

 std::sort(customer.begin(), customer.end(), smallerPhi);

 // kIsOpen means that the k-centroid is not yet full

 // When centroid becomes full, isOpen will turn to false

LIFE GreenYourRoute: A European innovative logistic platform for last mile
delivery of goods in urban environment

 Page | 62

 // At first, all centroids are open

 bool *kIsOpen = new bool [nVehicles];

 for(int k=0; k<nVehicles; k++)

 kIsOpen[k] = true;

 // The following will be used because I want to calculate centroids

 // and distances at each cluster. I need the x and y cooridnates

 // and the size of the customers assigned to cluster

 double *x = new double [nVehicles];

 double *y = new double [nVehicles];

 int *size = new int [nVehicles];

 for(int k=0; k<nVehicles; k++)

 {

 x[k] = 0;

 y[k] = 0;

 size[k] = 0;

 }

 // Customers are sorted based on their phi angle from barycentre

 double startPhi = customer[seed].phi;

 for(int i=0; i<nCustomers; i++)

 {

 for(int k=0; k<nVehicles; k++)

 {

 // Customer i will be assigned to the first available k

 if(vehicle[k].V + customer[i].f < nVisits/nVehicles

 && kIsOpen[k])

 {

 customer[i].assignedTo = k;

 vehicle[k].V += customer[i].f;

 vehicle[k].Q += customer[i].f*customer[i].q;

 x[k] += customer[i].x;

LIFE GreenYourRoute: A European innovative logistic platform for last mile
delivery of goods in urban environment

 Page | 63

 y[k] += customer[i].y;

 size[k]++;

 break;

 }

 // But if there is no avaiable k, then the customer i will

 // be assigned to the last vehicle, even if it is full

 else if(k == nVehicles-1)

 {

 customer[i].assignedTo = k;

 vehicle[k].V += customer[i].f;

 vehicle[k].Q += customer[i].f*customer[i].q;

 x[k] += customer[i].x;

 y[k] += customer[i].y;

 }

 // If customer i cannot be assigned to k (which is still open)

because

 // it just overpassed its capacity, then it's time to close k.

 else if(kIsOpen[k])

 {

 kIsOpen[k] = false;

 x[k] /= size[k];

 y[k] /= size[k];

 continue;

 }

 }

 }

 // Last vehicles's x and y were not divided by size

 x[nVehicles-1] /= size[nVehicles-1];

 y[nVehicles-1] /= size[nVehicles-1];

LIFE GreenYourRoute: A European innovative logistic platform for last mile
delivery of goods in urban environment

 Page | 64

 // Calculate distances and coefficient of variation = stdv/avg and choose

update min

 double minDist = 10e10;

 double maxDist = 0;

 for(int k=0; k<nVehicles; k++)

 {

 double dist = sqrt((x[k]-barycentre.x)*(x[k]-barycentre.x) +

 (y[k]-barycentre.y)*(y[k]-barycentre.y));

 if(dist < minDist)

 minDist = dist;

 if(dist > maxDist)

 maxDist = dist;

 }

 if(maxDist - minDist < min)

 {

 min = maxDist - minDist;

 bestSeed = seed;

 }

 delete [] kIsOpen;

 delete [] x;

 delete [] y;

 delete [] size;

 }

 // I repeat the process only for the seed I selected as bestSeed

 Centre p = {0, customer[bestSeed].x, customer[bestSeed].y, 0, 0};

 double zx0 = p.x - barycentre.x;

 double zy0 = p.y - barycentre.y;

 for(int i=0; i<nCustomers; i++)

 {

 double zxi = customer[i].x - barycentre.x;

LIFE GreenYourRoute: A European innovative logistic platform for last mile
delivery of goods in urban environment

 Page | 65

 double zyi = customer[i].y - barycentre.y;

 double dot = zxi*zx0 + zyi*zy0;

 double pcross = -zx0*zyi + zxi*zy0;

 customer[i].phi = atan2(pcross, dot)*180/3.1415;

 }

 // Clustering following phi angle

 for(int k=0; k<nVehicles; k++)

 {

 vehicle[k].Q = 0;

 vehicle[k].V = 0;

 }

 // Sort customers based on their angle

 std::sort(customer.begin(), customer.end(), smallerPhi);

 // kIsOpen means that the k-centroid is not yet full

 // When centroid becomes full, isOpen will turn to false

 // At first, all centroids are open

 bool *kIsOpen = new bool [nVehicles];

 for(int k=0; k<nVehicles; k++)

 kIsOpen[k] = true;

 // I DONT USE BORDERS THROUGHOUT THE CODE.

 // BUT I INCLUDE CODE HERE TO CALCULATE BORDERS

 // IN CASE OF FUTURE REFINEMENT

 vector<TwoNumbers<int>> borders;

 int start = 0;

 // Customers are sorted based on their phi angle from barycentre

 for(int i=0; i<nCustomers; i++)

 {

 for(int k=0; k<nVehicles; k++)

 {

LIFE GreenYourRoute: A European innovative logistic platform for last mile
delivery of goods in urban environment

 Page | 66

 // Customer i will be assigned to the first available k

 if(vehicle[k].V + customer[i].f < nVisits/nVehicles

 && kIsOpen[k])

 {

 customer[i].assignedTo = k;

 vehicle[k].V += customer[i].f;

 vehicle[k].Q += customer[i].f*customer[i].q;

 break;

 }

 // But if there is no avaiable k, then the customer i will

 // be assigned to the last vehicle, even if it is full

 else if(k == nVehicles-1)

 {

 customer[i].assignedTo = k;

 vehicle[k].V += customer[i].f;

 vehicle[k].Q += customer[i].f*customer[i].q;

 }

 // If customer i cannot be assigned to k (which is still open) because

 // it just overpassed its capacity, then it's time to close k.

 else if(kIsOpen[k])

 {

 TwoNumbers<int> startEnd = {start, i-1};

 borders.push_back(startEnd);

 start = i;

 kIsOpen[k] = false;

 continue;

 }

 }

 }

 TwoNumbers<int> startEnd = {start, nCustomers-1};

LIFE GreenYourRoute: A European innovative logistic platform for last mile
delivery of goods in urban environment

 Page | 67

 borders.push_back(startEnd);

 delete [] kIsOpen;

 // I will check which customers are close to borders

 // Angle phi will help distinghuish them

 bool ** isCloseToBorder = new bool *[nCustomers];

 for(int i=0; i<nCustomers; i++)

 isCloseToBorder[i] = new bool [nVehicles];

 for(int i=0; i<nCustomers; i++)

 for(int k=0; k<nVehicles; k++)

 isCloseToBorder[i][k] = false;

 double win = nCustomers/nVehicles*0.05;

 for(int k=0; k<nVehicles; k++)

 {

 int ii = borders[k].a;

 if(ii != 0)

 {

 for(int i=ii-(int) win/2; i<ii; i++)

 isCloseToBorder[customer[i].iter][k] = true;

 for(int i=ii; i<ii+(int) win/2; i++)

 isCloseToBorder[customer[i].iter][k-1] = true;

 }

 else

 {

 for(int i=nCustomers-(int) win/2; i<nCustomers; i++)

 isCloseToBorder[customer[i].iter][0] = true;

 for(int i=ii; i<ii+(int) win/2; i++)

 isCloseToBorder[customer[i].iter][nVehicles-1] = true;

 }

 }

}

LIFE GreenYourRoute: A European innovative logistic platform for last mile
delivery of goods in urban environment

 Page | 68

int assignCustomersToVehicles(vector<Customer> &customer, vector<Vehicle> &vehicle,

double varVisits, double varTurnover, vector<FromTo<bool>> &ft, ofstream &fLog)

{

 fLog << endl << "Assignment of customers to vehicles" << endl;

 int nCustomers = customer.size();

 int nVehicles = vehicle.size();

 double Q = 0;

 int nVisits = 0;

 for(int i=0; i<nCustomers; i++)

 {

 Q += customer[i].q*customer[i].f;

 nVisits += customer[i].f;

 }

 // COIN-OR STARTS HERE.

 // We will use the Osi Interface to create the problem.

 // Osi is an interface that could be used to pass the

 // created problem to many solvers. When we create an Osi

 // interface we then define the OsiXXXSolverInterface

 // where XXX may be Clp (a COIN LP solver), GLPK, CPLEX

 // or whichever other solver one can use

 // noVar will be the iterator of the number of variables

 // we have added in the problem. It starts at -1 and will

 // turn 0 when the first variable is defined.

 int noVar = -1;

 // varX will store the variables. In COIN-OR the

 // variables are referenced by a single integer: 0, 1, 2 etc

 // So when we pass say the 12th variable, we want to remember

 // that this variable represents e.g. the variable y(4).

LIFE GreenYourRoute: A European innovative logistic platform for last mile
delivery of goods in urban environment

 Page | 69

 // So we need to have y(4) = 12 and we will refer to this

 // variable not as 12, but as y[4]. This is what varY does

 int *varX;

 // Here we define the coefficients in the objective function

 // per variable, the lower/upper bounds for each variable,

 // and the lower/upper bounds of the constraints.

 double *objective, *col_lb, *col_ub, *row_lb, *row_ub;

 // The number of variables-columns and constraints-rows can be

 // the actual number or a larger one.

 int nCols = nCustomers*nVehicles;

 int nRows = nCustomers+nVehicles+nVehicles;

 // We allocate memory for each one

 varX = new int [nCols];

 objective = new double [nCols];

 col_lb = new double [nCols];

 col_ub = new double [nCols];

 row_lb = new double [nRows];

 row_ub = new double [nRows];

 // Create an OSI interface called model

 // Since we know we will solve the problem using the

 // Clp solver we instantiate the object model as

 // an OsiClp solver interface - we could also pas Cpx for CPLEX

 OsiSolverInterface *model = new OsiClpSolverInterface();

 // Next we define the variables. That is, we correspond the first

 // column noVar=0 to the variable varX[0] and so on.

 // varX represents the variable x(i,j), so it takes two indices:

 // i and j. COIN works better with one-dimension arrays. So we

 // surely want to avoid manipulation of 2D matrices. For this reason

 // we have defined a simple function calc_Index which takes the

LIFE GreenYourRoute: A European innovative logistic platform for last mile
delivery of goods in urban environment

 Page | 70

 // two indices i and j, and based on the number of columns N, it

 // returns a single index: i*N+j which in fact maps the

 // position of the item (i,j) onto a single dimension.

 // Step by step: we calculate the index using (i,j). We assign the variable

 // to this index. We fix the lower and upper bound of the variable

 // and define the coefficient in the objective function.

 for(int i=0; i<nCustomers; i++)

 {

 for(int k=0; k<nVehicles; k++)

 {

 int index = calc_Index(customer[i].iter, k, nVehicles);

 varX[index] = ++noVar;

 col_lb[noVar] = 0;

 col_ub[noVar] = 1;

 if(customer[i].assignedTo == k)

 objective[noVar] = 0;

 //else if(isCloseToBorder[customer[i].iter][k])

 // objective[noVar] = 0;

 else

 objective[noVar] = 1;

 }

 }

 // Up to this time, we have passed no information yet to our model.

 // The creation of the variables served only for the next phase.

 // Up to now the model is empty!

 // We now define the technological matrix of the constraints.

 // The constraints will be created based on the variables that we

 // created in the previous step and their coefficients in the

LIFE GreenYourRoute: A European innovative logistic platform for last mile
delivery of goods in urban environment

 Page | 71

 // technological matrix.

 CoinPackedMatrix * matrix = new CoinPackedMatrix(false, 0,0);

 matrix->setDimensions(0, noVar+1);

 // noCtr is like noVar. It will be the iterator of the number

 // of constraints we have added in the problem. It starts at

 // -1 and will turn 0 when the first constraint is defined.

 int noCtr = -1;

 // Constraints are similar to variables. In the future, when we

 // wish to obtain the dual values of reduced costs of this

 // constraint instead of asking getDualValue(20) we will ask

 // getDualValue(conCustomer[20]).

 int *conAssign = new int [nCustomers];

 int *conTurnover = new int [nVehicles];

 int *conVisits = new int [nVehicles];

 // Next we define each row of the constraint

 // Step by step: we assign the current iterator to the constraint

 // we want to recall later. We define lower and upper bounds.

 // And then we proceed to creating a row

 // vector that will contain for every variable its coefficient. We insert

 // this product x(i,j)*a(i,j) in the row using the row.insert method.

 // When all elements of the row/constraint are added, we append this row

 // in the technological matrix using matrix->appendRow(row).

 // NOTE: We use "->" when the object (e.g. "matrix") is a pointer and "." when

 // the object (e.g. "row") is not a pointer.

 // Assignment

 for(int i=0; i<nCustomers; i++)

 {

 conAssign[i] = ++noCtr;

 row_lb[noCtr] = 1;

LIFE GreenYourRoute: A European innovative logistic platform for last mile
delivery of goods in urban environment

 Page | 72

 row_ub[noCtr] = 1;

 CoinPackedVector row;

 for(int k=0; k<nVehicles; k++)

 {

 int index = calc_Index(customer[i].iter, k, nVehicles);

 row.insert(varX[index], 1);

 }

 matrix->appendRow(row);

 }

 // Turnover

 for(int k=0; k<nVehicles; k++)

 {

 conTurnover[k] = ++noCtr;

 row_lb[noCtr] = varTurnover*Q/nVehicles;

 row_ub[noCtr] = (2-varTurnover)*Q/nVehicles;

 CoinPackedVector row;

 for(int i=0; i<nCustomers; i++)

 {

 int index = calc_Index(customer[i].iter, k, nVehicles);

 row.insert(varX[index], customer[i].q*customer[i].f);

 }

 matrix->appendRow(row);

 }

 // Number of visits per vehicle

 for(int k=0; k<nVehicles; k++)

 {

 conVisits[k] = ++noCtr;

 row_lb[noCtr] = varVisits*nVisits/nVehicles;

 row_ub[noCtr] = (2-varVisits)*nVisits/nVehicles;

 CoinPackedVector row;

LIFE GreenYourRoute: A European innovative logistic platform for last mile
delivery of goods in urban environment

 Page | 73

 for(int i=0; i<nCustomers; i++)

 {

 int index = calc_Index(customer[i].iter, k, nVehicles);

 row.insert(varX[index], customer[i].f);

 }

 matrix->appendRow(row);

 }

 // Load problem to OSI model

 // We have almost all we need to load our model: we have variables,

 // bounds for these variables, constraints and bounds, and coefficients.

 // We do not know yet which variables are integer if any. All are float.

 model->loadProblem(*matrix, col_lb, col_ub, objective, row_lb, row_ub);

 fLog << "Number of variables: " << model->getNumCols() << endl

 << "Number of constraints: " << model->getNumRows() << endl

 << "Number of variables: " << model->getNumElements() << endl;

 // This would solve the relaxation of the problem

 // Reduce verbosity of the solver. If put at false, too much

 // info will flood the screen

 model->setHintParam(OsiDoReducePrint,true, OsiHintDo);

 for(int i=0; i<nCustomers; i++)

 {

 for(int k=0; k<nVehicles; k++)

 {

 int index = calc_Index(customer[i].iter, k, nVehicles);

 model->setInteger(varX[index]);

 }

 }

LIFE GreenYourRoute: A European innovative logistic platform for last mile
delivery of goods in urban environment

 Page | 74

 CbcModel BB(*model);

 CbcHeuristicFPump *heur1 = new CbcHeuristicFPump();

 heur1->setMaximumPasses(100);

 BB.addHeuristic(heur1);

 BB.setLogLevel(0);

 BB.setAllowableFractionGap(1);

 BB.branchAndBound();

 delete heur1;

 // First initialize vehicle current visits and Q just to be safe

 // Will later update them

 for(int k=0; k<nVehicles; k++)

 {

 vehicle[k].Q = 0;

 vehicle[k].V = 0;

 }

 // Check whether there exist cases where x(i,k) = 1 but the objective

 // coeeficient is 1, that is, check when a customer is NOT assigned

 // to the indended vehicle and mark where this customer is assigned

 // and where he should have been assigned

 // This is called the ft table (from-to): A vehicle requests a move

 // from "from" to "to".

 if(BB.isProvenOptimal())

 {

 const double *solution = BB.bestSolution();

 for(int k=0; k<nVehicles; k++)

 {

 for(int i=0; i<nCustomers; i++)

 {

 int index = calc_Index(customer[i].iter, k, nVehicles);

 int var = varX[index];

LIFE GreenYourRoute: A European innovative logistic platform for last mile
delivery of goods in urban environment

 Page | 75

 if(solution[var] > 10e-3) // 10e-3 is only for numerical purposes.

Means essentially "not 0"

 {

 customer[i].assignedTo = k;

 // Update Q (current turnover) and V (current num of

visits) for each vehicle

 int thisCustomer = customer[i].iter;

 vehicle[k].Q +=

customer[thisCustomer].q*customer[thisCustomer].f;

 vehicle[k].V += customer[thisCustomer].f;

 // Check to see whether this customer should have been

assigned elsewhere

 if(objective[var] == 1)

 {

 // The customer should have been assigned

toThisVehcle

 int toThisVehicle;

 for(int kk=0; kk<nVehicles; kk++)

 {

 int index = calc_Index(customer[i].iter,

kk, nVehicles);

 int var = varX[index];

 if(objective[var] == 0)

 toThisVehicle = kk;

 }

 FromTo<bool> aRequest = {customer[i].iter, k,

toThisVehicle, false};

 ft.push_back(aRequest);

 }

 }

 }

 }

LIFE GreenYourRoute: A European innovative logistic platform for last mile
delivery of goods in urban environment

 Page | 76

 }

 else

 {

 fLog << "Assignment of customers to vehicles not optimal. Exit. " << endl;

 return 1;

 }

 int nOverlaps = (int) BB.getObjValue();

 if(BB.getObjValue()-0.1 > nOverlaps) // -0.1 is only put for numerical purposes

 nOverlaps++;

 delete model;

 delete matrix;

 delete [] varX;

 delete [] objective;

 delete [] col_lb;

 delete [] col_ub;

 delete [] row_lb;

 delete [] row_ub;

 delete [] conAssign;

 delete [] conTurnover;

 delete [] conVisits;

return nOverlaps;

}

