

LIFE GreenYourRoute: A European innovative logistic platform for last mile delivery of goods in urban environment

Deliverable C1: *Emission inventory methodology and monitoring of the environmental impact of the project*

Partner responsible for this report: UTH

	Document Information Summary		
Action:	C1 Monitoring of the environmental impact of the project		
Sub-action:	Sub-action C1.1: Monitoring methodology for environmental impact		
	Sub-action C1.2: Data collection and quantification of environmental impact		
Deliverable Number:	C1		
Deliverable Title:	Emission inventory methodology and monitoring of the environmental impact of the project		
Leader:	UTH		
Participants:	UTH, ATHINAIKI, CEDA, CHAPS, ITACA, PLUS, KOUKOUZELIS.		
Author(s)	Dr. Georgios K.D. Saharidis		
Project website	www.greenyourroute.com		
Status:	Final		

Disclaimer:

The LIFE GYR[LIFE17 ENV/GR/000215] project is co-funded by the LIFE programme, the EU financial instrument for the environment.

The sole responsibility for the content of this report lies with the authors. It does not necessarily reflect the opinion of the European Union. Neither the EASME nor the European Commission are responsible for any use that may be made of the information contained therein.

Start Date: 01 September 2018 - Duration: 42 months

Contents

Con	tents	5		4
Abb	orevia	atior	ns	6
List	of Fi	gure	es	8
List	of Ta	ables	5	.10
List	of E	quat	ions	.12
Abs	tract	•••••		.13
1	Intro	oduc	ction	.14
1.	1	Act	ion definition	.14
1.	2	Des	cription of each Sub-Action	.14
	1.2.1	L	Sub-Action C1.1 Monitoring methodology for environmental impact	.14
	1.2.2	2	Sub-action C1.2: Data collection and quantification of environmental impact	.14
2	Indi	cato	rs	. 15
2.	1	Veh	icle attributes	.16
2.	2	Tra	velled distance	.17
2.	3	Occ	upancy rate	.17
2.	4	Ave	erage circulation speed	.17
2.	5	Roa	d characteristics	.18
2.	6	On-	road dynamics	.19
3	Mor	nitor	ing Protocol	. 20
3.	1	Intr	oduction	.20
3.	2	Dat	a	.21
	3.2.1	L	Step 1: Determination of the needed activity data	.22
	3.2.2	2	Step 2: Collection of the corresponding activity data	.23
	3.2.3	3	Step 3: Performance of a QA/QC analysis	.24
	3.2.4	Ł	Step 4: Selection of the appropriate emission factors	.24
	3.2.5	5	Step 5: Calculation of the environmental impact	.25
4	Nov	rel E	mission Inventory Methodology	. 26
4.	1	Eur	o standards and Emission Reduction Technologies in Vehicles	.26
	4.1.1	L	Introduction	.26
	4.1.2	2	Euro Standards	.26
	4.1.3	3	Emission Reduction technologies	.31
4.	2	Dat	abase and Development Methodology Background	.32
	4.2.1	L	Introduction	.32

	4	.2.2	COPERT model analysis	
	4.3	GYF	R Database and Development Methodology	
	4	.3.1	Introduction	
	4	.3.2	Factors Effect analysis (rationale)	
	4	.3.3	Factors Classes	
5	E	Environi	mental impact of LIFE GYR project	
	5.1	Intro	oduction	
	5.2	Imp	act of the project	
	5	5.2.1	Impact - ATHINAKI, PLUS KOUKOUZELIS	
	5	5.2.2	Impact – CEDA's customer	
	5	5.2.3	Impact – ITACA's customer	
	5	5.2.4	Impact - DIGICOM	
	5	5.2.5	Impact - YOUTRADESMART	
	5	5.2.6	Impact - DASCO S.A.	
	5	5.2.7	Impact - Total	
	5	5.2.8	Foreseen vs Actual environmental impact	
	5	5.2.9	Justification of deviations	
6	A	Annex I		
7	В	Bibliogra	aphy	

Abbreviations

A/C	Air Conditioning	
API	Application Programming Interface	
CNG	Compressed Natural Gas	
CH ₄	Methane	
GHG	Greenhouse gas	
GYR	GreenYourRoute project	
CNG	Compressed Natural Gas	
СО	Carbon Monoxide	
CO ₂	Carbon dioxide	
CO ₂ eq	Carbon dioxide equivalent	
COPERT	EU standard vehicle emissions calculator	
СР	Checkpoint	
ERP	Enterprise resource planning	
EEA	European Environment Agency	
FC	Fuel Consumption	
HDVs	Heavy duty vehicles	
HI	Heat Index	
JRC	Joint Research Centre	
km/h	Kilometers per hour	
LPG	Liquefied Petroleum Gas	
LCVs	Light Commercial Vehicles	
L-category	Vehicles including Mopeds , motorcycles, Quads and ATVs, and Micro Cars	
LPG	Liquefied Petroleum Gas	
N ₂ O	Nitrous Oxide	
NH ₃	Ammonia	
NO _x	Nitrogen Oxides	
PM	Particulate Matter	

PN	Particle Numbers
PCI	Pavement Condition Index
QA / QC	Quality Assurance / Quality Control
SO ₂	Sulfur Dioxide
SCR	Selective Catalytic Reduction
tkm	Tonne-kilometer
VOC	Volatile Organic Compounds
VRP	Vehicle Routing Problem

European Commission

List of Figures
FIGURE 1: THE EMISSION OF SEVERAL POLLUTANTS FOR EACH TYPE OF VEHICLE IN THE
ROAD SECTION WITH PCI VALUE OF 100 (SETYAWAN, 2015)
FIGURE 2: "THE TOTAL EMISSION OF NO, CO2, SO, PM AND CO AT VARIOUS PCI VALUE AND
THE CORRELATION BETWEEN PCI AND TOTAL EMISSION" (SETYAWAN, 2015)
FIGURE 3: "EMISSION PERCENTAGE VARIATION DUE TO THE ROAD GRADE SIMULATION
(*SIGNIFICANT DIFFERENCE AT THE 95% CONFIDENCE INTERVAL)" (PRATI, 2014)41
FIGURE 4: "STUDIES ON THE CHANGES OF FUEL CONSUMPTION AND EMISSIONS WITH THE
CHANGE OF ROAD GRADES" (WENDAN ZHANG, 2015)
FIGURE 5: "ENERGY DENSITY AND CO2 EMISSIONS FOR VARIOUS FUELS (SOURCE:
AUSTRALIAN GREENHOUSE OFFICE (AGO) 1998)" (HONNERY DAMON, 2002)43
FIGURE 6: "SUMMARY OF TAILPIPE CO2 EMISSIONS FROM VARIOUS DIESEL AND NATURAL
GAS ENGINES" (MARC STETTLER, 2019)
FIGURE 7: "ENERGY EFFICIENCY FOR IN-CITY DRIVING VS. FREEWAY DRIVING" (WU XINKAI,
2015)
FIGURE 8: DIMENSIONS EXPRESSED AS MM OF A VAN PROVIDED BY MERCEDES-BENZ
(UNDER THE BONNET: SPECIFICATIONS, DIMENSIONS AND WEIGHT OF THE SPRINTER
PANEL VAN)
FIGURE 9: DIMENSIONS EXPRESSED AS METERS OF AN EU HGV TRACTOR AND TRAILER
(DINGS, 2012)
FIGURE 10: "SUMMARY OF SPEED/ACCELERATION PROFILES, EMISSION FACTORS AND FUEL
CONSUMPTION RATES FOR LDV AND HDV GROUPED BY TRAFFIC CONDITION."
(ZHANG KAI, 2011)
FIGURE 11: "ESTIMATED EMISSION DENSITY AND FUEL CONSUMPTION DENSITY FOR
TRAFFIC ON THE I-94 SEGMENT." (ZHANG KAI, 2011)
FIGURE 12: "TAILPIPE METHANE EMISSIONS QUANTIFIED AS METHANE SLIP FOR VARIOUS
VEHICLE AND ENGINE TYPES." (MARC STETTLER, 2019)
FIGURE 13: "EMISSION RATES FOR CO AND RATES FOR DIFFERENT SPEEDS AND PASSENGER
LOAD" (QIAN YU, 2016)
FIGURE 14: "SUMMARY OF OTHER AIR POLLUTANT EMISSIONS PRODUCED BY DIFFERENT
TYPES OF DIESEL AND NATURAL GAS HEAVY GOODS VEHICLES." (MARC STETTLER,
2019)
FIGURE 15: "SUMMARY OF THE N2O EMISSIONS PRODUCED BY VARIOUS DIESEL AND
NATURAL GAS ENGINES". RESULTS PRESENTED AS DEFINED IN DIFFERENT STUDIES"
(MARC STETTLER, 2019)90

- FIGURE 16: TABLE A "EMISSION RATIOS (SPECIES/CO2) FOR DIFFERENT LIGHT DUTY VEHICLES TYPES. THE VOLUME RATIOS HAVE BEEN MULTIPLIED BY 10,000. THE UNCERTAINTIES ARE SHOWN AS THE 95% CONFIDENCE INTERVAL IN THE MEAN.NIS THE SAMPLE SIZE. THE UNCERTAINTIES IN THE NO2/NOX RATIO WERE CALCULATED BASED ON THE MEAN UNCERTAINTIES CALCULATED FOR NO2AND NOX." (DAVID C. FIGURE 17: TABLE B - "EMISSION RATIOS (SPECIES/CO2) FOR DIFFERENT HEAVY DUTY VEHICLES TYPES. THE VOLUME RATIOS HAVE BEEN MULTIPLIED BY 10,000. THE UNCERTAINTIES ARE SHOWN AS THE 95% CONFIDENCE INTERVAL IN THE MEAN.NIS THE SAMPLE SIZE. THE UNCERTAINTIES IN THE NO2/NOX RATIO WERE CALCULATED BASED ON THE MEAN UNCERTAINTIES CALCULATED FOR NO2AND NOX" (DAVID C. FIGURE 18: "AVERAGE EMISSIONS OF NH3 FROM LIGHT DUTY VEHICLES FROM SEVERAL FIGURE 19: "EMISSION RATES FOR NOX AND RATES FOR DIFFERENT SPEEDS AND FIGURE 20: "NOX AND PM -EMISSIONS MEASURED FOR A EURO 2 HDV ON THE CHASSIS DYNAMOMETER FOR DIFFERENT REAL-LIFE DRIVING CYCLES AS A FUNCTION OF

List of Tables

TABLE 1: INDICATORS
TABLE 2: VEHICLE TYPE
TABLE 3: FUEL TYPE
TABLE 4: OCCUPANCY RATE
TABLE 5: SPEED CLASSES
TABLE 6: GRADIENT 19
TABLE 7: WIND VELOCITY 19
TABLE 8: EURO STANDARDS FOR LCVS ≤1305 KG REFERENCE MASS (CATEGORY N1 CLASS I).
VALUES ARE PRESENTED AS G/KM OR PARTICLES/KM FOR THE CASE OF PN27
TABLE 9: EURO STANDARDS FOR LCVS 1305–1760 KG REFERENCE MASS (CATEGORY N1 CLASS
II). VALUES ARE PRESENTED AS G/KM OR PARTICLES/KM FOR THE CASE OF PN
TABLE 10: EURO STANDARDS FOR LCVS >1760 KG (MAX 3.500 KG) REFERENCE MASS.
CATEGORY N1 CLASS III AND N2. VALUES ARE PRESENTED AS G/KM OR
PARTICLES/KM FOR THE CASE OF PN
TABLE 11: EURO STANDARDS FOR HDVS. VALUES ARE PRESENTED AS G/KM OR AS
DESCRIBED IN THE RELEVANT ROWS OF THE TABLE
TABLE 12: COPERT GAPS FOR EMISSION TYPES AND RESPECTIVE VEHICLE CATEGORIES 32
TABLE 13: PARAMETERS OF MODEL AND THEIR TYPES
TABLE 14: EMISSION FACTORS FOR CO2 / FC - GAP ANALYSIS RESULTS, FINDINGS AND
APPLIED SOLUTIONS (IN GYR DATABASE)
TABLE 15: SEVERAL EMISSIONS VALUES (REPRESENTING DIFFERENT ROAD CONDITIONS)
DERIVED FROM (SETYAWAN, 2015) EXPRESSED AS RATES (%) COMPARED WITH VALUES
IN EXCELLENT ROAD CONDITIONS
TABLE 16: ASSUMPTIONS OF RELEVANT PARAMETERS FOR THE PRODUCTION OF DIFFERENT
TRAFFIC MODES
TABLE 17: EMISSION FACTORS FOR CH4 – GAP ANALYSIS RESULTS, FINDINGS AND APPLIED
SOLUTIONS (IN GYR DATABASE)60
TABLE 18: EMISSION FACTORS FOR CO - GAP ANALYSIS RESULTS, FINDINGS AND APPLIED
SOLUTIONS (IN GYR DATABASE)

TABLE 21: EMISSION FACTORS FOR NH3 - GAP ANALYSIS RESULTS, FINDINGS AND APPLIED
SOLUTIONS (IN GYR DATABASE)95
TABLE 22: ACTUAL EMISSION RATIOS EXPRESSED AS MASS/MASS OF NH3/ CO2 AND
NOX/CO2 BASED ON (DAVID C. CARSLAW, 2013,) RESULTS
TABLE 23: EMISSION FACTORS FOR NOX - GAP ANALYSIS RESULTS, FINDINGS AND APPLIED
SOLUTIONS (IN GYR DATABASE)
TABLE 24: EMISSIONS VALUES FOR NO (REPRESENTING DIFFERENT ROAD CONDITIONS)
DERIVED FROM (SETYAWAN, 2015) EXPRESSED AS RATES (%) COMPARED WITH VALUES
IN EXCELLENT ROAD CONDITIONS
TABLE 25: EMISSION FACTORS FOR PM EXHAUST – GAP ANALYSIS RESULTS, FINDINGS AND
APPLIED SOLUTIONS (IN GYR DATABASE)
TABLE 26: PM EMISSIONS VALUES (REPRESENTING DIFFERENT ROAD CONDITIONS) DERIVED
EDONG (SEEN/ANALANI 2045) ENDRESSED AS RAFES (%) CONDADED MUTTIL MALLIES IN
FROM (SETYAWAN, 2015) EXPRESSED AS RATES (%) COMPARED WITH VALUES IN
FROM (SETYAWAN, 2015) EXPRESSED AS RATES (%) COMPARED WITH VALUES IN EXCELLENT ROAD CONDITIONS
FROM (SETYAWAN, 2015) EXPRESSED AS RATES (%) COMPARED WITH VALUES IN EXCELLENT ROAD CONDITIONS. 127 TABLE 27: EMISSION FACTORS FOR VOC - GAP ANALYSIS RESULTS, FINDINGS AND APPLIED
FROM (SETYAWAN, 2015) EXPRESSED AS RATES (%) COMPARED WITH VALUES IN EXCELLENT ROAD CONDITIONS
 FROM (SETYAWAN, 2015) EXPRESSED AS RATES (%) COMPARED WITH VALUES IN EXCELLENT ROAD CONDITIONS. TABLE 27: EMISSION FACTORS FOR VOC - GAP ANALYSIS RESULTS, FINDINGS AND APPLIED SOLUTIONS (IN GYR DATABASE). TABLE 28: GYR DATABASE EMISSION FACTORS AND RESPECTIVE CLASSES
 FROM (SETYAWAN, 2015) EXPRESSED AS RATES (%) COMPARED WITH VALUES IN EXCELLENT ROAD CONDITIONS. 127 TABLE 27: EMISSION FACTORS FOR VOC - GAP ANALYSIS RESULTS, FINDINGS AND APPLIED SOLUTIONS (IN GYR DATABASE)
FROM (SETYAWAN, 2015) EXPRESSED AS RATES (%) COMPARED WITH VALUES IN EXCELLENT ROAD CONDITIONS. 127 TABLE 27: EMISSION FACTORS FOR VOC - GAP ANALYSIS RESULTS, FINDINGS AND APPLIED SOLUTIONS (IN GYR DATABASE) 136 TABLE 28: GYR DATABASE EMISSION FACTORS AND RESPECTIVE CLASSES 149 TABLE 29: IMPACT OF ATHINAKI, PLUS KOUKOUZELIS 151 TABLE 30: IMPACT OF ATHINAKI, PLUS KOUKOUZELIS
FROM (SETYAWAN, 2015) EXPRESSED AS RATES (%) COMPARED WITH VALUES IN EXCELLENT ROAD CONDITIONS. 127 TABLE 27: EMISSION FACTORS FOR VOC - GAP ANALYSIS RESULTS, FINDINGS AND APPLIED 136 SOLUTIONS (IN GYR DATABASE) 136 TABLE 28: GYR DATABASE EMISSION FACTORS AND RESPECTIVE CLASSES 149 TABLE 29: IMPACT OF ATHINAKI, PLUS KOUKOUZELIS 151 TABLE 30: IMPACT OF ATHINAKI, PLUS KOUKOUZELIS 152 TABLE 31: IMPACT OF ITACA'S CUSTOMER. 153
FROM (SETYAWAN, 2015) EXPRESSED AS RATES (%) COMPARED WITH VALUES IN EXCELLENT ROAD CONDITIONS. 127 TABLE 27: EMISSION FACTORS FOR VOC - GAP ANALYSIS RESULTS, FINDINGS AND APPLIED 136 SOLUTIONS (IN GYR DATABASE) 136 TABLE 28: GYR DATABASE EMISSION FACTORS AND RESPECTIVE CLASSES 149 TABLE 29: IMPACT OF ATHINAKI, PLUS KOUKOUZELIS 151 TABLE 30: IMPACT OF ATHINAKI, PLUS KOUKOUZELIS 152 TABLE 31: IMPACT OF ITACA'S CUSTOMER. 153 TABLE 32: IMPACT OF DIGICOM. 154
FROM (SETYAWAN, 2015) EXPRESSED AS RATES (%) COMPARED WITH VALUES IN EXCELLENT ROAD CONDITIONS. 127 TABLE 27: EMISSION FACTORS FOR VOC - GAP ANALYSIS RESULTS, FINDINGS AND APPLIED 127 SOLUTIONS (IN GYR DATABASE) 136 TABLE 28: GYR DATABASE EMISSION FACTORS AND RESPECTIVE CLASSES 149 TABLE 29: IMPACT OF ATHINAKI, PLUS KOUKOUZELIS 151 TABLE 30: IMPACT OF ATHINAKI, PLUS KOUKOUZELIS 152 TABLE 31: IMPACT OF ITACA'S CUSTOMER 153 TABLE 32: IMPACT OF DIGICOM 154 TABLE 33: IMPACT OF YOUTRADESMART. 155
FROM (SETYAWAN, 2015) EXPRESSED AS RATES (%) COMPARED WITH VALUES IN EXCELLENT ROAD CONDITIONS.127TABLE 27: EMISSION FACTORS FOR VOC - GAP ANALYSIS RESULTS, FINDINGS AND APPLIED SOLUTIONS (IN GYR DATABASE)136TABLE 28: GYR DATABASE EMISSION FACTORS AND RESPECTIVE CLASSES149TABLE 29: IMPACT OF ATHINAKI, PLUS KOUKOUZELIS151TABLE 30: IMPACT OF ATHINAKI, PLUS KOUKOUZELIS152TABLE 31: IMPACT OF ITACA'S CUSTOMER153TABLE 32: IMPACT OF DIGICOM154TABLE 33: IMPACT OF JOUTRADESMART155TABLE 34: IMPACT OF DASCO S.A.156
FROM (SETYAWAN, 2015) EXPRESSED AS RATES (%) COMPARED WITH VALUES IN EXCELLENT ROAD CONDITIONS.127TABLE 27: EMISSION FACTORS FOR VOC - GAP ANALYSIS RESULTS, FINDINGS AND APPLIED SOLUTIONS (IN GYR DATABASE)136TABLE 28: GYR DATABASE EMISSION FACTORS AND RESPECTIVE CLASSES149TABLE 29: IMPACT OF ATHINAKI, PLUS KOUKOUZELIS151TABLE 30: IMPACT OF ATHINAKI, PLUS KOUKOUZELIS152TABLE 31: IMPACT OF ITACA'S CUSTOMER153TABLE 32: IMPACT OF DIGICOM154TABLE 33: IMPACT OF YOUTRADESMART155TABLE 34: IMPACT OF DASCO S.A.156TABLE 35: TOTAL IMPACT OF REAL LIFE DEMONSTRATION156

List of Equations

EQ. 1	
EQ. 2	
EQ. 3	
EQ. 4	
EQ. 5	
EQ. 6	

Abstract

The purpose of this deliverable is to present the environmental impact of LIFE GYR project and the monitoring protocol followed to estimate this impact. The developed monitoring protocol is based on the EMEP/EEA air pollutant emission inventory guidebook 2019. The joint EMEP/EEA air pollutant emission inventory guidebook supports the 'Guidelines for Reporting Emissions and Projections Data' under the United Nations Economic Commission for Europe (UNECE) Convention on Long-range Transboundary Air Pollution (LRTAP Convention). The guidebook provides concise guidance on how to compile an air pollutant emissions inventory. GYR team improve further the presented in the guidebook emissions calculation model by taking under consideration additional factors influencing the fuel consumption and emission emitted.

The monitoring protocol was applied for 2 check-points:

- CP1.1 (before the real life demonstration): we use the developed methodology and data routing plans which has been resulted without the use of GYR platform, using the simulation tool developed in the frame of Action C3 and we establish the baseline.

- CP1.2 (after the end of the real life demonstration): we use the developed methodology and data routing plans which has been resulted with the use of GYR platform and we establish the end of the project scenario.

After the estimation of the environmental impact of both scenarios (baseline scenario and end of the project scenario), we compare these impacts to define the overall environmental impact of the project.

1 Introduction

1.1 Action definition

The scope of *Action C.1 Monitoring of the environmental impact of the project* is to monitor and measure the project's impact on the environmental problem targeted. A monitoring protocol is established based on a novel emission inventory methodology, which is applied in the routing problems of the project's demonstrators in order to assess the environmental impact of the problem.

The expected emission reductions in terms of Fuel Consumption (FC), Carbon Dioxide (CO_2), Methane (CH_4), Carbon Monoxide (CO), Nitrous Oxide (N_2O), Ammonia (NH_3), Nitrogen Oxides (NO_x), Particulate Matter (PM), Volatile Organic Compounds (VOC) and Sulfur Dioxide (SO_2) are calculated during the project lifetime, based on the following Sub-Actions.

1.2 Description of each Sub-Action

Action C1 includes two sub-actions, namely Sub-Action C1.1 *Monitoring methodology for environmental impact* and Sub-Action C1.2 *Data collection and quantification of environmental impact*.

1.2.1 Sub-Action C1.1 Monitoring methodology for environmental impact

During this Sub-Action, a novel emission inventory methodology is developed for the accurate and case-tailored emission inventory estimation.

This novel emission inventory methodology is developed based on the EMEP/EEA air pollutant emission inventory guidebook 2019 and outcomes of previously implemented EU funded projects (i.e. emission calculation models developed in GreenRoute project and emission inventory methodology developed in LIFE GreenYourMove project). GYR team adjusts the approach developed in the frame of previous projects to cater the specific vehicles fleet (i.e. freight transportation vehicles instead of passenger vehicles and public transport means vehicles) of demonstrators.

1.2.2 Sub-action C1.2: Data collection and quantification of environmental impact

Routing planning data are collected regularly during a period of 17 months that routing planning is implemented with the use of GYR platform by 5 demonstrators/customers of GYR service and 3 new customers of GYR service. In the framework of this sub-action, the project team defines:

a) the precision of data required by the emission inventory methodology (developed in Sub-Action C1.1);

b) the amount of data collected (i.e. the daily routing plans per user);

c) the frequency of collecting dynamic data (i.e. 10 routing plans per user per week).

Additionally, the data collected by GYR team, and an external assistant from demonstrators and new users are homogenized (e.g. data per time frame), digitized (e.g. transformation of data to adequate digital form) and classified (e.g. data per truck).

UTH and external assistant with the support of demonstrators and new users collected data regularly (i.e. 10 days per month) during a period of 17 months that routing is implemented with the use of GYR platform.

The first and the second check point (i.e. CP1.1 and CP1.2) are both represented from the same data set in order to be properly compared.

A number of monitoring indicators are calculated based on the collected data. These indicators are defined in the following section.

2 Indicators

The indicators defined in the frame of LIFE GYR project for the assessment of the environmental impact of the project are in total 10 and are presented in the following table. We have to notice that these indicators are used also beyond other for the assessment of the socio-economic impact of the project in Action C2.

ID (as described in Action C2)	Criteria	Indicator	Direction	Unit
B.10.1	Fuel efficiency	Average amount of consumed fuels per travelled kilometers	Minimize	gr/kg per km
B.10.2	CO ₂ efficiency	Emitted mass of CO2/transport work	Minimize	gr/kg per km
B.10.3	CH ₄ efficiency	Average amount of emitted CH4 per travelled kilometers	Minimize	gr/kg per km
B.10.4	CO efficiency	Average amount of emitted CO per travelled kilometers	Minimize	gr/kg per km
B.10.5	N ₂ O efficiency	Average amount of emitted N2O per travelled kilometers	Minimize	gr/kg per km
B.10.6	NH ₃ efficiency	Average amount of emitted NH3 per travelled kilometers	Minimize	gr/kg per km
B.10.7	NO _x efficiency	Average amount of emitted NOx per travelled kilometers	Minimize	gr/kg per km
B.10.8	PM efficiency	Average amount of emitted PM per travelled kilometers	Minimize	gr/kg per km
B.10.9	VOC efficiency	Average amount of emitted VOC per travelled kilometers	Minimize	gr/kg per km
B.10.10	SO ₂ efficiency	Average amount of emitted SO2 per travelled kilometers	Minimize	gr/kg per km

The activity data needed for the assessment of these indicators are the vehicle attributes, the travelled distance, the occupancy rate of the trucks, the average circulate speed of the trucks, the road characteristics, and the on-road dynamics.

2.1 Vehicle attributes

The scope is to determine the **Vehicle Class ID** for all vehicles participating in the routing process (see **Annex I Vehicle Class IDs** for the complete list of the Vehicle Class IDs) based on the following criteria:

• Vehicle type (column vehicle_type): The vehicle type of each vehicle is determined. The classification used includes Light Motor Vehicles, Light Commercial Vehicles and Heavy Duty Vehicles, which are classified to light (less than 14 tons), medium (between 14 and 28 tons) and heavy (greater than 28 tons) trucks.

vehicleType_classID	description_en
1	L-Category
2	Light Commercial Vehicles
3	HDV < 14 t
4	14 t < HDV < 28 t
5	28 t < HDV

- Size of vehicle (column vehicle_description): The size of each vehicle based on its type is determined. The classification differs for each type of vehicle. For Light Motor Vehicles the engine size characteristic is used for the classification, i.e. two-stroke greater than 50 cm³, four-stroke between 50 and 150 cm³, etc. For Light Commercial Vehicles the maximum mass characteristic is used to classify vehicles; all vehicles of this type belong to category N1 (vehicles for the carriage of goods and having a maximum mass not exceeding 3.5 tonnes), which is further divided into three weight classes (N1-I, N1-II and N1-III), based on the vehicles' reference mass, defined as the mass of the vehicle in running order less the uniform mass of the driver of 75 kg, and increased by a uniform mass of 100 kg. For Heavy Duty vehicles the maximum mass characteristic is used to classify vehicles; all vehicles of this type belong to categories N2 (vehicles for the carriage of goods and having a maximum mass exceeding 3.5 tonnes but not exceeding 12 tonnes) and N3 (vehicles for the having a maximum mass exceeding 12 tonnes). These are further classified to rigid (single unit vehicles) and articulated (vehicles with a permanent or semi-permanent pivot joint in their construction). Rigid and articulated vehicles are then classified based on the vehicles' reference mass. See Annex I for the complete list.
- Emission control technology (column typeOfEngine): The exhaust emission standards the vehicle is compliant with according to the European legal framework, i.e. Euro I to Euro VI standards, is determined. For older vehicles, i.e. vehicles non-compliant with

European emission standards but already on the road when these standards were established, the conventional category is used to characterize emission classification.

• Fuel specifications (column typeOfFuel): The type of fuel of each vehicle is determined. The classification used includes petroleum fuels (petrol or Diesel fuels) and alternative fuels (electricity, compressed natural gas (CNG), liquefied petroleum gas (LPG) fuels).

typeOfFuel_classID	description_en
1	Petrol
2	Diesel
3	Electricity
4	CNG
5	LPG

Table 3: Fuel type

2.2 Travelled distance

The travelled distance is needed to define the total emissions produced through the routing process. For each possible combination of nodes the distance and time between nodes is computed via the GYR platform.

2.3 Occupancy rate

Occupancy rate is classified based on the average vehicle load compared to its capacity. The occupancy rate is equal to Freight loaded on the truck / Vehicle capacity. For each possible combination of nodes the occupancy rate between nodes is computed via the GYR platform.

occupancy_min	occypancy_max	description_%
0	10	10%
10	20	20%
20	30	30%
30	40	40%
40	50	50%
50	60	60%
60	70	70%
70	80	80%
80	90	90%
90	100	100%

Table 4: Occupancy rate

2.4 Average circulation speed

The average circulation speed can either be obtained from traffic models via online APIs or be assumed based on statistics. In cases where traffic monitoring is unavailable, the average

circulation speed is defined based on the road classification. In such cases, minimum and maximum speed limits are obtained based on urban, rural and highway functional road types.

For each possible combination of nodes the average circulation speed between nodes is computed.

speed_classID	speed_min	speed_max	description
1	0	5	km/h
2	5	10	km/h
3	10	15	km/h
4	15	20	km/h
5	20	25	km/h
6	25	30	km/h
7	30	35	km/h
8	35	40	km/h
9	40	45	km/h
10	45	50	km/h
11	50	55	km/h
12	55	60	km/h
13	60	65	km/h
14	65	70	km/h
15	70	75	km/h
16	75	80	km/h
17	80	85	km/h
18	85	90	km/h
19	90	95	km/h
20	95	100	km/h
21	100	105	km/h
22	105	110	km/h
23	110	115	km/h
24	115	120	km/h
25	120	125	km/h
26	125	130	km/h
27	130	135	km/h
28	135	140	km/h
29	0	200	km/h (general)
30	0	40	Urban (km/h)
31	40	70	Rural (km/h)
32	70	140	Highway (km/h)

Table 5: Speed classes

2.5 Road characteristics

For each possible combination of nodes the road gradient and the pavement condition are computed between nodes via the GYR platform.

• Road gradient: Road gradient categories are defined based on the lateral slopes of the road's geometry. These vary between a minimum and a maximum incline of -20% and 0 respectively for downhill roads and between a minimum and a maximum incline of 0 and 20% respectively for uphill roads. In the case where it cannot be computed by the Cost Matrix API a nominal condition with 0% road gradient is considered.

gradient_min	gradient_max	Description
-20	-5	-6%
-5	-3	-4%
-3	-1	-2%
-1	0	-1%
0	0	0%
0	1	1%
1	3	2%
3	5	4%
5	20	6%

Table 6: Gradient

• Road surface characteristics: the road age is considered for road surface characteristics, ranging from 1 to 15 years. In the case where it cannot be computed a nominal condition of a newly constructed asphalt pavement is considered (i.e. year 1).

2.6 On-road dynamics

For each possible combination of nodes the traffic flow, the wind speed and direction and the A/C usage are computed between nodes.

- Traffic flow: Traffic flow is classified as low (increased vehicle speeds), medium (normal vehicle speeds) and heavy (decreased vehicle speeds) for each possible combination of nodes. Regarding the Traffic flow data, in the case where it cannot be computed by a Traffic API a nominal condition of low traffic situation is considered.
- Wind speed and direction: Wind speeds are classified between a minimum and maximum value of -80 to 0 km/h for headwinds, i.e. winds blowing against the direction of travel of the vehicle, and between 0 and 80 km/h for tailwinds, i.e. winds blowing in the direction of travel. Wind speed is computed for each possible combination of nodes via the weather API. Regarding the wind speed data, in the case where it cannot be computed by the weather API a nominal condition of a wind speed equal to zero is considered.

speed_min	speed_max	description
-80	-40	km/h
-40	-25	km/h
-25	-15	km/h

Table 7: Wind velocity

-15	-5	km/h
-5	5	km/h
5	15	km/h
15	25	km/h
25	40	km/h
40	80	km/h

• Use of Air Condition: Air condition usage is classified based on the heat index. The heat index is an index that combines air temperature and relative humidity and is also known as the felt air temperature. Differentiations occur for heat index values between 68 (actual temperature of 22°C and humidity 45%) and 110 (actual temperature over 40°C and humidity 100%). Regarding the heat index data, in the case where it cannot be computed via weather API, a nominal condition where an A/C operation is not required, i.e. temperature between 20 and 28°C with humidity of 20 to 30%, is considered.

3 Monitoring Protocol

3.1 Introduction

An emission inventory is a first step towards accounting and monitoring emissions. An emission inventory is a dataset of all quantified emissions, expressed by source for:

- ✓ A particular location (e.g. country);
- ✓ A particular time span (e.g. time-series or specified year);
- ✓ A particular pollutant (e.g. CO2).

Emission inventories can be useful to various logistics operators in order to assess and attempt to investigate ways to mitigate emissions, to research programs who wish to evaluate the current state, to health impact studies, to econometric studies.

The basic elements that are relevant to each emission inventory and need to be defined are the following:

Air pollutants to be included: the pollutants that are analyzed in the inventory;

Inventory baseline year: the baseline year against which all future emission inventories are compared;

Emission sources: the sources that produce emissions included in the inventory;

Activity data: the activity data for each emission source that are used in the emission calculations.

In order to compile and create the emission inventory, for each pollutant the emissions are estimated by multiplying the activity data for each source with a corresponding emission

factor. The resulted emission inventory should ensure a high quality, which will promote its use. The basic quality criteria are the following¹:

Accuracy: sufficient accuracy should be promoted in emission estimates. Emissions should not be systematically underestimated or overestimated.

Comparability: emission estimates should be comparable among different parties. Thus, parties should follow the methodologies proposed by the convention.

Completeness: the inventory should cover all the sources and air pollutants, as requested by the convention.

Consistency: consistent methodology should be used to estimate emission for all the timeseries, which will enable meaningful comparison of inventories over the years.

Transparency: all the methodologies and assumptions used for the estimation of emissions should be clearly documented, in order to facilitate replication and assessment of the inventory by other users.

The basic equation used to estimate emissions is the following:

Activity data is a measurement of the activities that generate emissions, such as gasoline consumption in vehicles. Emission factor are ratios of the emissions per unit of activity data, i.e. gr CO_2 emitted by km travelled by a vehicle. In some cases, emission factors are calculated using laboratory data or real-world data, but also default emission factors are provided in guidance documents by EEA.

The general procedure for calculating emissions from each emission source is as follows:

Step 1: Determination of the needed activity data (e.g. fuel consumption) for each emission source;

Step 2: Collection of the activity data;

Step 3: Quality assurance / Quality Control (QA /QC) procedure (i.e. gap-filling);

Step 4: Selection of appropriate emission factors based on the available activity data;

Step 5: Calculation of emissions for each air pollutant (e.g. CO₂, CH₄, NO_x etc.).

In the frame of LIFE GreenYourRoute project the above 5 steps were followed in order to calculated the environmental impact of the real life demonstration period of 17 months.

3.2 Data

The monitoring protocol is based on the novel emission methodology, developed under the frame of Action C1 of LIFE GreenYourMove project. This monitoring protocol was applied to the Greek public transport network in order to assess the environmental impact of the problem targeted. The monitoring protocol and the novel emission methodology consist of 5

¹http://climatechange.transportation.org/pdf/NCHRPGHGGuidelinesJuly152011.pdf

steps and are based on the general procedure for calculation emissions, as described above in section 3.1.

As already mentioned, the steps for creating an emission inventory are 5. In the following, these 5 steps are described.

3.2.1 Step 1: Determination of the needed activity data

The activity data that are needed for the novel emission methodology as well as for the monitoring protocol are the vehicles' attributes, the distance travelled, each vehicle's occupancy rate and the average vehicle speed. A good understanding of the attributes of the vehicle is necessary for estimating their degree of environmental pressure. The emissions produced through road transport are obtained from functional relations that predict the quantity of a pollutant that is emitted per distance driven, energy consumed or amount of fuel used. Emissions produced are usually derived from vehicle categories and they depend on many parameters, such as vehicle characteristics, emission control technology and fuel specifications.

3.2.1.1 Vehicle attributes

All types of vehicles suitable for freight transport are classified based on European Commission's directives for vehicle classification as part of emission standards and other vehicles' regulations.

- Vehicle type: The vehicle type of each vehicle is determined. The classification used includes Light Motor Vehicles, Light Commercial Vehicles and Heavy Duty Vehicles, which are classified to light (less than 14 tons), medium (between 14 and 28 tons) and heavy (greater than 28 tons) trucks.
- Size of vehicle: The size of each vehicle based on its type is determined. The classification differs for each type of vehicle. For Light Motor Vehicles the engine size characteristic is used for the classification, i.e. two-stroke greater than 50 cm³, fourstroke between 50 and 150 cm³, etc. For Light Commercial Vehicles the maximum mass characteristic is used to classify vehicles; all vehicles of this type belong to category N1 (vehicles for the carriage of goods and having a maximum mass not exceeding 3.5 tonnes), which is further divided into three weight classes (N1-I, N1-II and N1-III), based on the vehicles' reference mass, defined as the mass of the vehicle in running order less the uniform mass of the driver of 75 kg, and increased by a uniform mass of 100 kg. For Heavy Duty vehicles the maximum mass characteristic is used to classify vehicles; all vehicles of this type belong to categories N2 (vehicles for the carriage of goods and having a maximum mass exceeding 3.5 tonnes but not exceeding 12 tonnes) and N3 (vehicles for the having a maximum mass exceeding 12 tonnes). These are further classified to rigid (single unit vehicles) and articulated (vehicles with a permanent or semi-permanent pivot joint in their construction). Rigid and articulated vehicles are then classified based on the vehicles' reference mass.

3.2.1.2 Fuel specifications

The type of fuel of each vehicle is determined. The classification used includes petroleum fuels (petrol or Diesel fuels) and alternative fuels (electricity, compressed natural gas (CNG), liquefied petroleum gas (LPG) fuels).

3.2.1.3 Emission control technology

The exhaust emission standards the vehicle is compliant with according to the European legal framework, i.e. Euro I to Euro VI standards, is determined. For older vehicles, i.e. vehicles non-compliant with European emission standards but already on the road when these standards were established, the conventional category is used to characterize emission classification.

3.2.1.4 Travelled distance

The travelled distance is needed to define the total emissions produced through the routing process.

3.2.1.5 Occupancy rate

Utilization efficiency is one of the main parameters that determine energy and emission efficiency. Higher load factor is likely to result in a significant increase in vehicle weight and therefore in more energy use and emissions. High load factors are still preferable, however, since low load factors imply a higher number of transport movements, which is generally more environmentally damaging. Occupancy rate is classified based on the average vehicle load compared to its capacity. This factor is not taken into account for two or three-wheeled vehicles (mopeds and motorcycles).

3.2.1.6 Average circulation speed

The average circulation speed can either be obtained from traffic models or be assumed based on the scientific literature and statistics. Speed classes to define the circulation speed are defined for both cases. In cases where average circulation speed can be obtained from traffic monitoring models, speed classes are determined based on the minimum and maximum speed that can be obtained in kilometers per hour (km/h). In cases where traffic monitoring is unavailable, the average circulation speed is defined based on the road classification. In such cases, minimum and maximum speed limits are obtained based on urban, rural and highway functional road types.

3.2.2 Step 2: Collection of the corresponding activity data

The second step concerns the collection of the identified activity data. The project beneficiaries acting as demonstrators, UTH and an external assistant collect, digitize and homogenize all the activity data concerning vehicle characteristics of their fleet. A vehicle class is defined for each vehicle based on its type, size, type of fuel and emission control technology specifications. Distance and average circulation speed data are collected through the Cost Matrix API, developed under the frame of Action B3. The Cost Matrix API is utilized both in the case when the routing process is defined by the demonstrators (i.e. for defining the baseline emissions data) and when the routing process is derived directly by the Vehicle Routing Problem (VRP) algorithm developed under the frame of Action B2. Occupancy rate data are either calculated based on the freight carried by each vehicle compared to its capacity when the routing process is defined by the demonstrators or are dynamic data derived from the VRP algorithm.

3.2.3 Step 3: Performance of a QA/QC analysis

In the case of missing activity data, an imputation process is followed, based on each activity. No missing data exist in the vehicle attributes category. The technical specifications for all vehicles are available through various sources, such as vehicle registration documents, online technical sheets, automotive brands' webpages, etc. No imputation process is therefore needed for the data of this category. Regarding the travelled distance, in case the Cost Matrix API is unable to provide the necessary data, distance approximation approaches, such as Manhattan distances calculation, are performed instead. Regarding the occupancy rate data, no missing activity data exist. However, in several cases order packages may be of vague dimensions. In these cases, the order's volume is calculated based on the order quantity and the most suitable defined package dimensions. Regarding the average circulation speed, in case the Cost Matrix API is unable to provide the necessary data, then the network where the routing process takes place is considered. In the case of urban areas a speed class with speed values ranging between 0 and 40 km/h is considered; in the case of rural areas a speed class with speed values ranging between 40 and 70 km/h is considered; and in the case of networks outside built-up areas including highways and national roads a speed class with speed values between 70 and 140 km/h is considered. In the case where the network cannot be categorized, a general speed class with speed values between 0 and 200 km/h is considered.

3.2.4 Step 4: Selection of the appropriate emission factors

Additional emission factors are determined by the ambient and operating conditions of the vehicle.

3.2.4.1 Road characteristics

Road characteristics include the road gradient and the road surface characteristics.

- Road gradient: The gradient of a road is an important factor that affects the exhaust emissions and the fuel consumption of a vehicle. It has the effect of increasing or decreasing the resistance of a vehicle to traction. The overall gradient effect on vehicle behavior is dependent on the vehicle's mass. In general, for light duty trucks the gradient effect is less important compared to heavy duty trucks, because of their higher masses. Road gradient categories are defined based on the lateral slopes of the road's geometry. These vary between a minimum and a maximum incline of -20% and 0 respectively for downhill roads and between a minimum and a maximum incline of 0 and 20% respectively for uphill roads. Regarding the road gradient, in the case where it cannot be computed by the Cost Matrix API a nominal condition with 0% road gradient is considered.
- Road surface characteristics: the condition of the pavement is defined by its surface roughness, the construction material used, its age and condition. Road surface characteristics affect both the rolling resistance and the suspension losses. These factors affect the fuel consumption. Road characteristics are collected through the Cost Matrix API, developed under the frame of Action B3. For each possible combination of nodes the road gradient and the pavement condition are computed along with the distance and time between nodes. Regarding the pavement condition, in the case where it cannot be computed by the Cost Matrix API a nominal condition of a newly constructed asphalt pavement is considered.

3.2.4.2 On-road dynamics

The dynamic conditions in which a vehicle is driven play a role in determining the level of its environmental activity.

- Traffic flow: Traffic flow is defined by the current traffic volume of the road compared to its designed capacity. Higher traffic volumes may lead to congestion, which increases the emissions emitted due to decreased vehicle speeds and more frequent stop-start activities. Traffic flow is classified as low (increased vehicle speeds), medium (normal vehicle speeds) and heavy (decreased vehicle speeds).
- Wind speed and direction: The air flow over a vehicle transmits an aerodynamic force to the vehicle through pressure and shear stress distribution acting on the surface of the vehicle. Wind speeds are classified between a minimum and maximum value of 80 to 0 km/h for headwinds, i.e. winds blowing against the direction of travel of the vehicle, and between 0 and 80 km/h for tailwinds, i.e. winds blowing in the direction of travel. Regarding the wind speed data, in the case where it cannot be computed by the Weather API a nominal condition of a wind speed equal to zero is considered.
- Use of Air Condition: The influence of air-conditioning activity on the emissions and fuel consumption of vehicles is an important issue. Temperature and humidity are the most important factors of A/C system demand. While temperature is a widely recognized influence, the load placed on the air conditioning system by humidity can account for over half of the total load under the ambient conditions. Therefore, air condition usage is classified based on the heat index. The heat index is an index that combines air temperature and relative humidity and is also known as the felt air temperature. Differentiations occur for heat index values between 68 (actual temperature of 22°C and humidity 45%) and 110 (actual temperature over 40°C and humidity 100%). Regarding the heat index data, in the case where it cannot be computed by the Weather API a nominal condition where an A/C operation is not required, i.e. temperature between 20 and 28□C with humidity of 20 to 30%, is considered.
- Traffic flow data are collected through the Traffic API, developed under the frame of Action B3. Wind speed and direction data and heat index data are collected through the Weather API developed under the frame of Action B3. Regarding the Traffic flow data, in the case where it cannot be computed by the Traffic API a nominal condition of low traffic situation is considered.

3.2.5 Step 5: Calculation of the environmental impact

The environmental impact of LIFE GYR is calculated during the 17 Months of real-life practice period of Action B5. During this period, all demonstrators and 3 new customers (for the last 7 months of the real life demonstration period) use GYR service for calculating their routing activities. The emissions produced through the implemented routing processes are calculated. In order to assess the environmental impact of LIFE GYR, the project team develops a simulation tool under the frame of Action C3. This simulation tool is an application simulating each demonstrators routing planning before the integration of GYR application. The emissions produced through the routing process proposed by the simulation tool are also calculated and compared to the emissions from the actual routing plan followed in order to assess the environmental impact.

4 Novel Emission Inventory Methodology

One of the main LIFE GreenYourRoute project goals is to update and produce a vehicles emission calculation model in the form of a database. The purpose of the emission calculation model is to imprint a database based on updated COPERT model and a thorough state of the art analysis concerning vehicles emission factors. This database operates as a new, improved and detailed database for emission factors. The database is used as a source for the GYR platform operations. More specifically, the platform is used as a tool where the user can automatically calculate the emissions of vehicles by selecting specific characteristics/parameters.

The model parameters that were updated and enriched are the model's correction factors. The new model produced, focused on different vehicle types including Light commercial, L-category, HDV (up to 14 tn) and HDV (more than 14 tn) vehicles. Furthermore, in the new database GYR team tried to focus and to find solutions (valid values) for a wide range of emission factors.

Current section of this deliverable accompanies the GYR database introduced at the back-end of GYR platform (Deliverable B1.2 in Action B2) and its main purpose is to provide the database methodology and structure description as well as the respective justifications using literature results in order to ensure the validity of the content (database). Moreover, this section provides with background information for the best comprehension of the methodology followed and database content as well as the choices made in this context.

4.1 Euro standards and Emission Reduction Technologies in Vehicles

4.1.1 Introduction

The EURO standards as well as emission reduction technologies have been used to reduce emissions derived from vehicles. The first focuses on the legislative reduction of final emissions concentrations that are produced by vehicles, while the second are technologies that are implemented in vehicles in order to directly (on the fly) reduce the produced emissions (between the engine and the end-pipe). These aspects are playing crucial role in the emission produced by a vehicle, thus they were taken into consideration for GYR's database development.

4.1.2 Euro Standards

Euro standards are emission regulations applied in vehicles of different categories. These regulations are defined by the EU and illustrated in different EU directives. Euro standards are progressively become tighter (as time passes and as technology evolves). According to EC website (European Commission) the emissions regulated by the EU are "particulate matter (PM), nitrogen oxides (NOx), unburnt hydrocarbons (HC) and carbon monoxide (CO)". Moreover, the EURO standards are illustrated with Arabic digits for LCVs and with roman digits for the HDVs.

Finally, the most recent standards are derived from the following EC regulations:

• Directive 2007/46/EC (common framework for road vehicles)

- Regulation 715/2007/EC (Euro 5 and 6 limits)
- Regulation 692/2008/EC (Amendments for 715/2007/EC, Euro 5 and Euro 6)
- Regulations 2017/1151 (LDV testing processes) and 2018/1832 (real driving testing)
- Regulation 595/2009/EC (new limits for HDVs)
- Regulation 582/2011/EC (amendments for 595/2009/EC which is related with HDVs Euro VI category.

Progressive implementation of EURO standards in both LCVs and HDVs have led to a significant decrease of those pollutants. In the following tables the emission limits for each Euro class, for LCVs and HDVs are illustrated. The pollutants are expressed as g/km. The PN stands for Particulate Number, the NMHC stands for Non-Methane Hydro Carbons and the THC stands for Total Hydro Carbons.

Table 8: Euro standards for LCVs \leq 1305 kg reference mass (Category N1 Class I). Values are presented as g/km or Particles/Km for the case of PN.

Tier	СО	THC	NMHC	NOx	HC+NOx	PM	PN		
Diesel									
Euro 1	2.72	-	-	-	0.970	0.1400	-		
Euro 2	1.00	-	-	-	0.700	0.0800	-		
Euro 3	0.64	-	-	0.50	0.560	0.0500	-		
Euro 4	0.50	-	-	0.25	0.300	0.0250	-		
Euro 5a	0.50	-	-	0.18	0.230	0.0050	-		
Euro 5b	0.50	-	-	0.18	0.230	0.0045	6×10 ¹¹		
Euro 6b	0.50	-	-	0.08	0.170	0.0045	6×10 ¹¹		
Euro 6c	0.50	-	-	0.08	0.170	0.0045	6×10 ¹¹		
Euro 6d- Temp	0.50	-	-	0.08	0.170	0.0045	6×10 ¹¹		
Euro 6d	0.50	-	-	0.08	0.170	0.0045	6×10 ¹¹		
Petrol (Gaso	oline)								
Euro 1	2.72	-	-	-	0.97	-	-		
Euro 2	2.20	-	-	-	0.50	-	-		
Euro 3	2.30	0.20	-	0.150	-	-	-		
Euro 4	1.00	0.10	-	0.080	-	-	-		
Euro 5a	1.00	0.10	0.068	0.060	-	0.0050*	-		
Euro 5b	1.00	0.10	0.068	0.060	-	0.0045*	-		
Euro 6b	1.00	0.10	0.068	0.060	-	0.0045*	6×10 ¹¹		

Tier	СО	THC	NMHC	NOx	HC+NOx	PM	PN
Euro 6c	1.00	0.10	0.068	0.060	-	0.0045*	6×10 ¹¹
Euro 6d- Temp	1.00	0.10	0.068	0.060	-	0.0045*	6×10 ¹¹
Euro 6d	1.00	0.10	0.068	0.060	-	0.0045*	6×10 ¹¹

* The Value is applied for Vehicles equipped with Direct Injection Engines

Table 9: Euro standards for LCVs 1305–1760 kg reference mass (Category N1 Class II). Values are presented as g/km or Particles/Km for the case of PN.

Tier	СО	THC	NMHC	NOx	HC+NOx	PM	PN
Diesel	1	1	1	1		1	
Euro 1	5.17	-	-	-	1.400	0.1900	-
Euro 2	1.25	-	-	-	1.000	0.1200	-
Euro 3	0.80	-	-	0.65	0.720	0.0700	-
Euro 4	0.63	-	-	0.33	0.390	0.0400	-
Euro 5a	0.63	-	-	0.235	0.295	0.0050	-
Euro 5b	0.63	-	-	0.235	0.295	0.0045	6×10 ¹¹
Euro 6b	0.63	-	-	0.105	0.195	0.0045	6×10 ¹¹
Euro 6c	0.63	-	-	0.105	0.195	0.0045	6×10 ¹¹
Euro 6d- Temp	0.63	-	-	0.105	0.195	0.0045	6×10 ¹¹
Euro 6d	0.63	-	-	0.105	0.195	0.0045	6×10 ¹¹
Petrol (Gaso	line)	1	1	1	1	1	<u> </u>
Euro 1	5.17	-	-	-	1.4	-	-
Euro 2	4.00	-	-	-	0.6	-	-
Euro 3	4.17	0.250	-	0.180	-	-	-
Euro 4	1.81	0.130	-	0.100	-	-	-
Euro 5a	1.81	0.130	0.090	0.075	-	0.0050*	-
Euro 5b	1.81	0.130	0.090	0.075	-	0.0045*	-
Euro 6b	1.81	0.130	0.090	0.075	-	0.0045*	6×10 ¹¹
Euro 6c	1.81	0.130	0.090	0.075	-	0.0045*	6×10 ¹¹
Euro 6d- Temp	1.81	0.130	0.090	0.075	-	0.0045*	6×10 ¹¹

Tier	СО	THC	NMHC	NOx	HC+NOx	РМ	PN
Euro 6d	1.81	0.130	0.090	0.075	-	0.0045*	6×10 ¹¹

* The Value is applied for Vehicles equipped with Direct Injection Engines

Table 10: Euro standards for LCVs >1760 kg (max 3.500 kg) reference mass. Category N1 Class III and N2. Values are presented as g/km or Particles/Km for the case of PN.

Tier	СО	THC	NMHC	NOx	HC+NOx	РМ	PN
Diesel	I	I	I	1		I	
Euro 1	6.90	-	-	-	1.700	0.2500	-
Euro 2	1.50	-	-	-	1.200	0.1700	-
Euro 3	0.95	-	-	0.780	0.860	0.1000	-
Euro 4	0.74	-	-	0.390	0.460	0.0600	-
Euro 5a	0.74	-	-	0.280	0.350	0.0050	-
Euro 5b	0.74	-	-	0.280	0.350	0.0045	6×10 ¹¹
Euro 6b	0.74	-	-	0.125	0.215	0.0045	6×10 ¹¹
Euro 6c	0.74	-	-	0.125	0.215	0.0045	6×10 ¹¹
Euro 6d- Temp	0.74	-	-	0.125	0.215	0.0045	6×10 ¹¹
Euro 6d	0.74	-	-	0.125	0.215	0.0045	6×10 ¹¹
Petrol (Gaso	oline)	1	1			1	
Euro 1	6.90	-	-	-	1.7	-	-
Euro 2	5.00	-	-	-	0.7	-	-
Euro 3	5.22	0.29	-	0.210	-	-	-
Euro 4	2.27	0.16	-	0.110	-	-	-
Euro 5a	2.27	0.16	0.108	0.082	-	0.0050*	-
Euro 5b	2.27	0.16	0.108	0.082	-	0.0045*	-
Euro 6b	2.27	0.16	0.108	0.082	-	0.0045*	6×10 ¹¹
Euro 6c	2.27	0.16	0.108	0.082	-	0.0045*	6×10 ¹¹
Euro 6d- Temp	2.27	0.16	0.108	0.082	-	0.0045*	6×10 ¹¹
Euro 6d	2.27	0.16	0.108	0.082	-	0.0045*	6×10 ¹¹

* The Value is applied for Vehicles equipped with Direct Injection Engines

Table 11: Euro standards for HDVs. Values are presented as g/km or as described in the relevant rows of the table.

Tier	Date	Test Cycle	CO	HC	NOx	NH3 [ppm]	PM	PN [particle	Smoke [m ⁻¹]
		-						s/kWh]	
Euro I	1992, < 85 kW	ECE	4.5	1.10	8.00		0.612		
	1992, > 85 kW		4.5	1.10	8.00		0.36		
Euro II	October 1995	R49	4.0	1.10	7.00		0.25		
	October 1997		4.0	1.10	7.00		0.15		
Euro III	October 1999 EEVs only	ESC & ELR	1.5	0.25	2.00		0.02		0.15
	October 2000		2.1	0.66	5.00		0.10 0.13*		0.8
Euro IV	October 2005		1.5	0.46	3.50		0.02		0.5
Euro V	October 2008		1.5	0.46	2.00		0.02		0.5
Euro VI	31 Decembe r 2012	WHS C	1.5	0.13	0.40	10	0.01	8×10 ¹¹	
		WHT C	4.0	0.16	0.46	10	0.01	6×10 ¹¹	

*It is applied for engines with swept volume $<0.75 \text{ dm}^3$ per cylinder and a rated power speed >3,000/min.

- EEV stands for "Enhanced environmentally friendly vehicle".
- Smoke values represent opacity derived from the smoke and 0 m⁻¹ represents completely clear while the 10 m⁻¹ represents completely black (total opacity) (Emissions Analytics, 2018).

The test cycles presented in the above table are defined settings for the objective testing of the emissions produced by vehicles; furthermore, test cycles support the comparison of different vehicles measurements as well as they attempt to approximate real life conditions (Samuel, 2002).

4.1.3 Emission Reduction technologies

As initial vehicle emissions (produced directly from the internal combustion engines of vehicles) could be higher than the required limits (see euro standard section), vehicle producers have developed and applied several technologies for the reduction of different types of emissions (e.g. NOx and PM) (Leon Ntziachristos, updated (2018)).

According to COPERT model and based on the literature, current fleets could be equipped with the following categories of relevant technologies:

- DPF: DPF stands for "Diesel Particulate Filter". DPF is a widely applied filter technology for the reduction of PM (Particulate Matter) emissions of diesel fueled vehicles; the technology is directly applied in exhaust gasses (Quan-shun, 2017).
- SCR: SCR stands for "Selective Catalytic Reduction". This technology is widely applied in vehicles from the previous decade in order to reduce NOx emissions, while the highest reduction rate is around 90%; the technology is applied in exhaust gasses with the use of a catalyst and ammonia (Jaworski, 2015).
- DPF + SCR: This category represents the combination, i.e. when both technologies (Diesel Particulate Filter and Selective Catalytic Reduction) are applied in a vehicle.
- EGR: EGR stands for "Exhaust Gas Recirculation". EGR systems are redirecting exhaust gasses to be used as engine intake in order to reduce NOx (vehicles with diesel engines). This is being achieved as this application reduces the oxygen concentration in the combustion chamber of the engine and thus the combustion temperature is decreased, a phenomenon that consequently leads to lower NOx emissions (Naresh, 2015).
- GDI: GDI stands for "Gasoline Direct Injection". In engines that work with GDI technology the fuel is injected directly in the cylinders and as a result they present higher fuel economy (reduced FC and CO2) but also higher PM emissions (Yang, 2018).
- GDI +GPF: GPF stands for "Gasoline Particulate Filter". As the GDI technology could lead to higher amounts of PM emissions, GPF technology could be used to decrease them; Since EURO 6c standard presents strict limits for PM emissions, GPF technology is widely installed in new vehicles as it has been reported that could reduce PN more than 89% (Yang, 2018). In this case, COPERT model refers to vehicles that combine both technologies.
- LNT+DPF: LNT stands for Lean NOx Trap. The LNT system is a technology with the same purpose with SCR (NOx reduction) and could be used as the only emission reduction method in a vehicle or combined with other technologies in order to increase efficiency (Wetzel, 2010). In this case LNT is combined with DPF filters.
- PFI: PFI stands for Port Fuel Injection. PFI engine is a common technology for vehicles. The vehicles that have PFI engines are currently more widely abundant (compared with GDI), but as the standard becoming stricter it is expected that this will be changed in new vehicles (GDI engines are expected to be used more widely); Moreover it has been found that PFI PM emissions are two times lower than GDI (Georges Saliba, 2017).

4.2 Database and Development Methodology Background

4.2.1 Introduction

As mentioned in the previous section, the database developed in the current project was based on COPERT (EMISIA, 2018). COPERT is an "EU standard vehicle emissions calculator" that uses several parameters to estimate fuel consumption and different types of emissions in different vehicle categories. COPERT model development has been managed generally by EEA while the scientific part has been managed by JRC. The development has been performed, as part of European Topic Centre for Air Pollution and Climate Change Mitigation (ETC/ACM) scheme. The COPERT model is used for the development of EU countries emission inventories as well as for several other purposes including academic purposes (EMISIA).

4.2.2 COPERT model analysis

The last version of COPERT model was downloaded from the website of EMISSIA ("spin off company of the Aristotle University of Thessaloniki / Laboratory of Applied Thermodynamics") in a form of an excel file accompanied by relevant documentation (report file) (EMISIA, 2018). The emission factors of the model were identified and relevant classes and respective emissions values were analyzed in order to identify gaps.

Emission and Vehicle type	Identified gap of COPERT
veniere type	
CO2 – LCV	Road slope and load factors are missing.
CO2 – L-Category	Technology, road slope and load are missing.
CO2 – HDVs	No missing information for this category
CH4 – LCV	No road slope and load provided.
CH4 – L-Category	Technology, road slope and load are missing.
CH4 – HDVs	Road and slopes are missing. The min and max speed are different from CO2 case.
CO – LCV	No data on other fuel types (only diesel and petrol). In technology null category is probably normal while it possibly indicates vehicle that have not installed relevant technologies. Slope and load are missing.
CO – L-Category	Technology, road slope and load are missing.
CO – HDVs	Mode is missing. Max and min speed differs from other pollutants.
N2O-LCV	All Data are missing for this category.

Table 12: COPERT Gaps for emission types and respective vehicle categories

EmissionandVehicle type	Identified gap of COPERT				
N2O - L-Category	Microcars are missing from segment category, consequently diesel is missing too.				
	Technology, road slope and load are missing.				
N2O – HDVs	Road slope and load are missing. Max and min speed differs from other pollutants.				
NH3- LCV	All Data are missing for this category.				
NH3- L-Category	Microcars are missing from segment category, consequently diesel is missing too.				
	Technology, road slope and load are missing. Min and Max speeds are different from other pollutants, but the same with N2O. Mode is applied in all vehicles.				
NH3 – HDVs	Road slope and load are missing.				
NOx – LCV	No data on other fuel types (only diesel and petrol). In technology null category is probably normal while it possibly indicates vehicle that have not installed relevant technologies. Slope and load are missing.				
NOx – L-Category	Technology, road slope and load are missing.				
NOx – HDVs	No data on other fuel types (only diesel and petrol).				
PM exhaust – LCV	No data on other fuel types (only diesel and petrol). In technology null category is probably normal while it possibly indicates vehicle that have not installed relevant technologies. Slope and load are missing.				
PM exhaust - L- Category	Technology, road slope and load are missing.				
PM exhaust - HDVs	Values represent only diesel fuel. No other missing information for this category.				
VOC – LCV	No data on other fuel types (only diesel and petrol). In technology null category is probably normal while it possibly indicates vehicle that have not installed relevant technologies. Slope and load are missing.				
VOC – L- Category	Technology, road slope and load are missing.				
VOC -HDVs	Mode is missing. Only diesel fuel is used.				

Emission and Vehicle type	Identified gap of COPERT
All Emission categories – All Vehicle categories	The fuel types for HDVs, LCVs and L-Category vehicles are Petrol and Diesel.

Furthermore to the above table and following a relevant literature review, we identified the consecutive aspects that are not included in COPERT model, although they play important role in emissions of modern EU fleets.

New Emission factors playing important role in the emissions from vehicles (not present in COPERT):

- Road Conditions
- Wind
- A/C
- Traffic
- Fuel types not presented in the COPERT
 - LPG
 - o CNG
 - Electricity (Electric powered vehicles)

4.3 GYR Database and Development Methodology

4.3.1 Introduction

Based on the background check performed in COPERT model and literature, we have the following aspects:

- The scope of the current database is to provide existing factors with more classes (i.e. more detailed information) where necessary and relevant literature exists and furthermore to introduce new factors based on literature results and modern EU fleets characteristics.
- The methodology followed included the customization into different emission types, while each emission was fed with all available information concerning factors that influence those emissions as well as for different types of vehicles.

In conclusion, all parameters used in the GYR database are summarized in the following tables.

Model's Parameter	Types	Comments
Emissions	CO2 / FC, CH4, CO,	These emissions were defined based on
	N2O, NH3, NOx, PM	the COPERT model and they are
	exhaust, VOC, SO2	considered representative of the
		emissions produced by vehicles.

Table 13: Parameters of Model and their types

Model's Parameter	Types	Comments
		Moreover, emissions types that include more than one chemical compounds (i.e. NOx, PM exhaust and VOC) were chosen based on current popular techniques for real life emissions measurements.
Vehicles	Light commercial, L- category, HDV (up to 14 tn) and HDVs (HDV < 14 t, 14 t < HDV < 28 t, 28 t < HDV)	These categories were chosen in order to reflect on an average vehicles fleet of EU countries. HDVs divided into three categories in order to optimize database results as this is a very large vehicle category with a high difference in weight (from less than 7.5 tonnes to 60 tonnes) and consequently with different behavior in emissions release.
Factors	Occupancy, Road Conditions, Road gradient, Type of Fuel, Wind, A/C, Traffic	Road Conditions, Wind, A/C and Traffic are new factors introduced.

Next section (4.3.2) is divided based on emission types. Detailed literature results are presented in the form of tables in order to justify and illustrate the final database content.

4.3.2 Factors Effect analysis (rationale)

4.3.2.1 Introduction

In the Table 12: COPERT Gaps for emission types and respective vehicle categories, we have illustrated the gaps of COPERT model by identifying missing information concerning correction factors. In this section, those gaps were filled by reviewing the literature and by identifying information that could be used as a justification for the database update. The aspects that were chosen to be used as well as the relevant justification are included in the following tables. In cases, no relevant literature was found COPERT model's results interpolation as well as methodology based on logical assumptions and steps took place in order to produce reliable values for the database.

More specifically, each table represents the gaps identified in each pollutant/emission and divided by emission factors. The tables structure for each emission consists from information that includes a) the correction factor, b) the identified gap (missing information), c) the main findings, including the presentation of relevant literature and the derived quantitative result (tables, graphs and values from models and experiments) and d) the comments, including how we used those results in order to add or modify data in the database.

LIFE GreenYourRoute: A European innovative logistic platform for last mile delivery of goods in urban environment

4.3.2.2 CO2/FC

Table 14: Emission Factors for CO2 / FC - Gap analysis results, findings and applied solutions (in GYR database)

Factors	Gap Analysis	Main Findings (all vehicles)	Final Solution	
Occupancy	L-category	L-category:	L-category:	
	no information	No information was found.	No values were produced for this	
	LCVs	LCVs:	category.	
	no information	No specific information was found for LCVs.	LCVs:	
	HDV - HDV < 14 t: COPERT provides data (3 classes)	 General Results: According to Rizet et al (Christophe Rizet, 2012), the impact of load on fuel consumption derived from case studies (literature) show that: a) In distribution tracks the effect is 0.5 liter of additional fuel consumed per 100 km for every additional tone of load and furthermore the consumption of an empty distribution track is about 2/3 compared with 	The occupancy effect was calculated by using the percentage increase described in the vehicles included in the type HDV>3.5 t of COPERT This increase was applied to all LCVs	
	HDV - 14 t < HDV < 28 t:	 b) For tipper trucks no specific result was found although the consumption increase was averagely estimated as 0.9 liters of fuel consumed per 100 km for every additional tone of load 	based on the respective euro categories.	
		 c) For Vans (2.5 to 3.5 tones – Euro 1 and 2 technology) the effect was 0.1 – 0.9 l of additional fuel per 100 km for urban conditions and 0.2 – 0.6 of additional fuel per 100 km for highway conditions 	Classes:	

Factors	Gap Analysis	Main Findings (all vehicles)	Final Solution
	COPERT provides data (3 classes) HDV -	Conclusions: L-Category: Since, L-Category vehicles include motorcycles, ATVs and mini cars that usually do not have important storage capacity we can assume that they are not affected by load or additional load is not applied for those cases.	COPERTmodelprovidedthreeoccupancyclasses.uthismodelnewmoredetailedclasseswereproducedforthiscorrectionfactor(0-
	28 t < HDV: COPERT provides data (3 classes)	LCVs: The information provided from the above article presented only actual fuel consumptions thus it was considered not representative for all LCVs as load capacities vary and different technologies (euro categories) can result a large difference in FC and consequently in CO2 emissions.In this context, values based on HDV occupancy effect (expressed as rates) as described in COPERT is considered a more reliable solution for LCVs occupancy estimation.	100% with a step of 10%) based on interpolation. This was performed to provide more detailed information since the effect from load is strong and significantly defines emissions calculation.
		The production of more detailed classes could be performed with the usage of interpolation.	This classification is applied to all vehicle categories and emission types for the consistency of the database.

Factors	Gap Analysis	Main Findings (all vehicles)	Final Solution
Road	L-category	L-category:	L-category:
Conditions	no information	No specific information was found.	The equation of (Saharidis G. , 2013) was
	LCVs no information	LCVs: No specific information was found.	used to calculate the effect of road age express as rate of initial fuel consumption (road age is equal to 0).
	HDV - HDV < 14	HDV (All types):	
	t	No specific information was found.	LCVs:
	no information	General Results:	The same methodology with L-Category was followed.
	HDV -	In the article of Setyawan et al (Setyawan, 2015) the effect of road condition was	
	14 t < HDV < 28 t:	examined using "PCI (Pavement Condition Index)" method and found that road	
	no information	conditions affect the speed of the vehicle and the total amount of CO2 and FC. For excellent to very poor pavement conditions the results for CO2 and other emissions	HDV - HDV < 14 t:
		are illustrated in the following table:	with L-Category was
	HDV -	Vehicle Type AADT \$\sum CO Emission\$ \$\sum PM Emission\$ \$\sum CO_2 Emission\$ \$\sum SO_2 emission\$ (Vehicle) g/km/hour g/km/hour g/km/hour g/km/hour g/km/hour	followed.
	28 t < HDV:	Motor Cycle 62148 15585.59 9.43 0.00 291566.85 0.76 Car 27276 1878.75 106.44 35.43 642105.96 1.66 Bus 2424 384.35 224.50 47.96 266966.93 0.69 HDV 2460 356.43 96.59 41.50 265907.14 0.69	
	no information	LDV 6516 2613.49 39.41 43.17 166317.91 0.43 Total emissions (g/km/hour) 100824 20818.61 476.37 168.06 1632864.79 4.23	HDV -
		Figure 1: The emission of several pollutants for each type of vehicle in the road section with PCI value of 100 (Setyawan, 2015).	14 t < HDV < 28 t:

Factors	Gap Analysis	Main Findings	(all vo	ehicles)						Final Solution
		The Corre	PCI 19 34 43 59 79 100 correlations lation Index	Σ CO Emission g/km/hour 21393.72 20999.81 20971.1 20829.53 20818.61 y = 353.61x ² - 148.7 + 20960 0.9314	∑NO Emiss g/km/hou 488.72 482.65 481.39 476.73 476.37 5x y = 0.4505x 0.8086x + 47 0.9739	$\begin{array}{r c} \mbox{ion} & \sum \mbox{PM Enis} \\ \hline r & g/km/hot \\ 172 & 22 \\ 170 & 12 \\ 169 & 65 \\ 168 & 24 \\ 168 & 26$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	ion ∑CO₂ Emii r g/km/ho 167181 163341 164258 163421 163421 163282 163431 163286 r ² - y = 1992.8 245 6629.5x + 2 0.9888	ssion ur 2 6 6 8 3 5 5 5 7 2 - - - - - - - - - - - - -	The same methodology with L-Category was followed.
		Figure 2: "T	The To	tal Emissio	n of NO, C	O2, SO, PN	I And CO a	t Various I	CI Value and The	HDV -
			orreia	lion betwee	en rCi anu	TOTAL FILLS	sion (Sety	awan, 2015).	28 t < HDV:
		Based on the ab percentage comp Table 15: So	oove f pared everal	igures we with the emissions	e have th excellent values (rej	e followi road con presenting	ng table ditions (F different r	with valu PCI – 100) oad condit	ies expressed as ions) derived from	The same methodology with L-Category was followed.
		(Setyawan, 2015) ex	presse	ed as rates (%) compar	ed with val	ues in exce	lient road c	onditions.	
			PCI	CO Increase	NO Increase	PM Increase	SO2 Increase	CO2 Increase		Classes:
			10	(%)	(%)	(%)	(%)	(%)		Based on the results of
			34	0.87	3.07	1.23	2.00	1.09		the equation and as the
			12	0.57	2.00	0.05	0.71	0.60		road pavement
			43 50	0.39	3.00	0.93	0.71	0.80		conditions are strongly
			59	0.25	2.45	0.52	0.00	0.34		dependent from road
			79	0.05	0.08	0.13	0.00	0.09		age, we produced 15
			100	0.00	0.00	0.00	0.00	0.00		classes describing road
										age expressed in years
		Furthermore, for	r the l	NO emiss	ion and b	ased on t	he study	of Soltic a	nd Weilenmann	1 st year from the road
		(Patrik Soltic, 20	03) tł	ne NO2 is	the 5.3%	(mass) o	f end-pip	e emissio	ns for passenger	construction/renovation
										to class 15 that equals

Factors	Gap Analysis	Main Findings (all vehicles)	Final Solution
		cars and 18.4 for LCVs, thus we can assume that these values are also representative for NOx emissions as NO is on average the 90% of NOx.	15 th year from road construction).
		for extra fuel consumption caused by road conditions expressed as road age. The equation could be used for all vehicle types.	This classification is applied to all vehicle
		ExtraFuelConsumption = $8 \times 10^{\circ} \times RodaAge^{2} + 0.0022 \times RodaAge + 2 \times 10^{\circ}$ Eq. 2	types for the consistency of the database.
		The above equation is considered more reliable for FC estimation, as it expresses extra fuel consumption as a function of road age. Road age is a representative parameter of road conditions and at the same time it is easier to be defined in a quantitative manner (e.g. bad road conditions could not easily be quantified and consequently defined by a database user). The equation results are expressed as percentage of extra fuel needed, so they could be easily applied to all vehicle types. Based on the above, several classes could be created and each of them should represent years of road age.	
Road gradient	L-category: no information LCVs no information	L-category: No specific information has been found for the effect of road gradient on L-category vehicles. Nevertheless, an experimental study (Prati, 2014) that examined a scooter (moped) that used pure gasoline and different percentages of bioethanol mixes, show the following influence of slope (E0=Case with pure petrol):	L-category: The same methodology with LCVs was followed.

Factors	Gap Analysis	Main Findings (all vehic	les)					Final Solution
		-			Positive grade	Negative grade		LCVs:
		-		E0	5.1	-30.2		
	HDV - HDV < 14		CO	G10	18.8	-33.1		The Road gradient effect
	t:	_		G20	-5.3	-57.1*		was calculated by using
	CODEDT		THC	E0 G10	-18.7	-20.2		the percentage increase
	COPERI			G20	-6.9	9.3		illustrated in the vehicles
	provides data (13	-		E0	58.3*	-55.5*		included in the type
	classes - From -		NOx	G10	41.1	-62.1*		HDV>3.5 + of COPERT
	0.06 to 0.06 (per	_		G20	33.2*	-63.2*		
	0.02)		<u></u>	E0	16.8	-31.2		This increase was
	,		002	G20	13.1	-30.2*		applied to all LCVs
							· _	based on the respective
	HDV - 14 t < HDV < 28 t: COPERT provides data (13	Figure 3: "Emission differen LCVs: Zhang et al (Wendan Zha	percent ice at the ng, 201	age va e 95% (15) ha	riation due t confidence i we perform	to the road grad nterval)" (Prati ned a case str	le simulation (*significant , 2014) . ady for the road gradient	Classes:
	classes - From - 0.06 to 0.06 (per 0.02)	effect on HDV vehicles concluded in the followir	emiss ng resu	ions. ilts:	In the sa	me study a	literature review have	COPERT model were considered detailed enough they kept the same classification (13 classes - From -0.06 to
	HDV -							0.06 (per 0.02)) in this
	28 t < HDV:							database.
	provides data (12							This classification is
	provides data (15							applied to all vehicle
	classes - From -							applieu to all vellicle

Factors	Gap Analysis	Main	Findings (all vehicles)							Final Soluti	on	
	0.06 to 0.06 (por				Cha	nge Pate of Emission (%)		Change Pate of Fuel	Mile-Per-Callon	categories a	nd om	iccion
	0.00 to 0.00 (per	NO.	References	Grade Range (%)	C0	HC	NOx	CO2	Consumption (%)	Fuel Economy	categories a	iu em	1551011
	0.02)	1	Silva et al. [13]	from 0% to + 8%	4-73	3-47	24-380	2-64			types f	or	the
	0.02)	2	Zhang and Frey [27]	≥5%	60-140	60-110	180-450	40-90			-) F		
			Boroujeni and	negative actual grade (1102 *)	1	-1	-7		-12		consistency	ot	the
		3	Frey [22]	positive actual grade (1111 *)	38	22	42		14		databasa		
				6% followed by -6%	10	4	10		15-20		ualavase.		
			Boriboonsomsin	nositivo						from -2 to			
		4	and Barth [15]	positive						-1.5 times			
				negative						2 times			
				positive					10-22 from -22 to -24				
		5	Frey et al. [21]	total					from -5 to 0				
				from 0% to + 5%					40-100				
				from 0% to + 7%	3.0g/mile/ + 1%grade	0.04 g/mile/ + 1% grade							
			Cicero-Fernândez	4.5% (vehicle with four	10.2 g/mile	0.07 g/mile							
		6	et al. [17]	passengers)		2							
				(air conditioning)	31.9 g/mile	0.07 g/mile							
				(* denotes the number of t	he segments with slope.							
		These testec are re cars. Conc Litera vehic parar perfo	Figure 4: " e results are d different a eferring to lusion: ature review les. Nevert neters. Sind rm the ass	Studies on the ch road e restricted as t aspects of vehic LCVs and the w show that t cheless, results ce COPERT m umption that	anges of fuel grades" (Wen they are bas cles charact 6 th calculat there is a s are not s todel provi LCVs road	consumption idan Zhang, 2 sed on diffe ceristics. For ted emissio significant of table and a des with v	and en 015). rent a c exan ns fro effect are de alues ect ha	nissi nple om t of s eper for s si	ions with the mptions or part and 3 ^r rrucks and slope in a nding from HDVs the milar beha	e change of they have d reference passenger ll types of n different en we can avior. This			
Type of Fuel	L-category	Gene	eral:								L-category:		

Factors	Gap Analysis	Main Findings (all vehicles)	Final Solution
	Information for Diesel and Petrol	In general the energy content and the CO2 released to the environment due to combustion of different fuels used in vehicles is presented below (Honnery Damon, 2002):	No additional fuel types were illustrated in this category.
	LCVs Information for Diesel and Petrol	Fuel MJ/litre CO2 g/MJ NG 25.0 54.4 LPG 25.7 59.4 Petrol 33.0 66.0 Diesel 38.6 69.7	LCVs: FC for LPG and CNG fuel types were
	HDV - HDV < 14 t: Information for Diesel and Petrol	Figure 5: "Energy density and CO2 emissions for various fuels (Source: Australian Greenhouse Office (AGO) 1998)" (Honnery Damon, 2002). L-category: No information was found. LCVs:	produced for LCVs. The increase of 10% in fuel consumption was used for both fuel types and applied for different LCV subcategories.
	HDV - 14 t < HDV < 28 t: Information for Diesel and Petrol	According to an experimental study (Tasic T., 2011) that tested passenger bifuel cars using LPG and Petrol, CO2 reduced 10% in Urban and 11% non-urban driving conditions (compared with petrol engine), while furthermore similar results were presented on the study of Saraf et al. (Saraf R.R., 2009) (8950 to 8051 ppm CO2 and 16509 to 14693 ppm CO2 for Urban and extra-urban conditions respectively). HDV (All types):	For electricity powered LCVs the average value of 0.310 KWh/km was used for all LCVs sub- types of the database. The CO2 emissions were calculated by
	HDV - 28 t < HDV:	CO2 emissions for vehicles with engines that use natural gas (NG) are presented in the article of Stettler et al (Marc Stettler, 2019). The article presents the following CO2 emissions as illustrated below:	multiplying the above value with the average emission factor of 995.8 g/KWh.

Factors	Gap Analysis	Main Findi	ngs (all v	ehicle	s)							Final Solution
	Information for		Vehicle	Fuel	Engine		CO2 Emissio	ons [g/km]		Source		HDV - HDV < 14 t:
	Diesel and Petrol		Туре		Туре	Avg.	Std	Min	Max			
	Dieser und i eutor			Diesel	CI	1,139	351	654	1,768	[10, 48-50]		The same methodology
			Freight	NG	SIS	1,142	434	540 906	2,376	[47-51]		with LCVs was
			THUCK	NG	DF	926	321	649	1,678	[10, 48]		followed
			Refuse	Diesel	CI	2,278	651	1,802	3,020	[50]		Tonowed.
			Truck	Diesel	CI	1,898	1.059	1,068	3,323	[50, 52]		HDV $14 + < HDV < 28 + 1$
			Transit Bus	NG	SILB	1,048	452	470	2,344	[53-55]		HDV - 14t < HDV < 28t.
				NG	SIS	1,110	406	334	1,677	[50, 54-57]		No additional fuel types
												No additional fuel types
		Fi	gure 6: "Su	mmary	of tailpi	pe CO2 o	emissior	is from	various o	diesel and na	atural gas	were illustrated in this
					engin	es"(Mar	c Stettle	r, 2019).				category.
												0,
		LPG and Cl	NG vehic	les:								
		. 16			. 1.0		1		6 11		1100	
		The actual f	uel consu	mption	n is diff	ticult to	be esti	mated	for all	vehicle typ	pes and LPG	HDV - 28 t < HDV:
		and CNG is	a commo	on fuel	for LC	Vs and	for rel	ative lo	ow wei	ghted HD	Vs (category	
		HDV - HDV	V < 14 t)	Based	on thi	s the a	verage	genera	al fuel	o increase (e	expressed as	No additional fuel types
			· · · · · · ·	Dubeu	on un	5 the u	veruge	genere	ii iuci .	increase (e	Apressed us	were illustrated in this
		rates) is the	following	5:								catagory
		CNIC	- ·	0 100			/т 1	<i>z</i>	0010)			category.
		• CNC	J engines	: 2-12%	6 FC in	crease (Jason	Kwon,	2012)			
		• LPG	engine: 1	10% FC	l increa	ase (Nik	cos Xyc	las, 201	17)			
		Furthermor	e, COPEI	RT mo	del pro	vides v	with va	alues f	or CNO	G and LPC	G buses and	
		Passenger c	ars whic	h are d	rategor	ies tha	t could	be co	rrespo	nded with	HDVs and	
		I CVs rospor	ctivoly N	ovorth	oloss t	ho valu		n for Fi	Cdone	at soom ror	rosontativo	
		LCVSTesper	cuvery. IN	evenui	eiess, u	lie valu	es give	11101 1	Cuon	n seem rep	nesemative.	
		Electric Vel	nicles:									
		Moreover fo	or electric	ty po	wered	vehicle	s we h	ave the	e follow	ving :		
		• The Vikt avai	electricit oriya, 20 lable on t	y pow 18) thu he mai	ered vo 1s, LCV rket.	ehicles ⁄s is the	are no e only	t so co catego	ommero ry of v	cialized ye ehicles tha	et (Kolarova at we found	

Factors	Gap Analysis	Main Findings (all vehicles)	Final Solution
		 According to a website (Electric Vehicle Database) the average consumption of electric passenger cars is 0.178 KWh/Km. This was derived from many market available electric cars (not only for commercial usage). According to an experimental study (Wu Xinkai, 2015) where a converted to electric vehicle was studied the average consumption was 0.168 KWh/Km for urban and 0.175 KWh/Km for free road conditions (see the following figure). 	
		Energy Efficiency: In-city Driving vs. Freeway Driving 8000 27.94 28.00 26.97 27.00 26.97 24.00 30.00 21.00 In-city Driving Freeway Driving Freeway Driving	
		• As literature results on LCVs are limited a search in ready available commercial solution was followed. In this context a specific cargo LCV vehicle characteristics (BD Auto) was studied and show a consumption of 0.31 KWh/Km (by dividing given range in Km with battery capacity in KWh).	

Factors	Gap Analysis	Main Findings (all vehicles)	Final Solution
		Emissions from Electricity: Since all exclusive electric vehicles are charged using the grid, then the emissions (including CO2) produced from vehicles with this fuel type are defined by the emissions types and volumes produced in each country for the grids electricity production. In this framework the EU average CO2 is 995.8 grams per KWh (ECOINVENT). Conclusion:	
		L-Category: Since, L-Category vehicles include motorcycles, ATVs and mini cars that usually do not have alternative fuel types we can assume that the provision of values for relevant fuel types is not necessary. Since COPERT values do not seem reliable for this category the FC of CNG and LPG vehicles could be calculated by using the 10% increase of consumption as an average value for both fuels (see results section).	
		Moreover, for electricity powered vehicles we can use the average CO2 emitted per KWh in Europe and multiply it with consumption expressed as KWh/km. Based on research performed in EU fleets it was assumed that only LCVs electric vehicles are available. Based on literature results the value of consumption for electric LCVs could be 0.31 KWh/Km as defined in the specific van. This is considered as the most representative value since it took into consideration a commercial light vehicle that better reflects the fleet illustrated in our database if we compare it with passenger cars which are in most of the cases smaller and thus less energy consuming.	
Wind	L-category	L-category:	L-category:
	no information	No specific information was found. LCVs:	The estimation was made by using the equation described in

Factors	Gap Analysis	Main Findings (all vehicles)	Final Solution
	LCVs	No specific information was found.	literature results
	no information	HDV (All types):	(Saharidis G. , 2013). Percentages of increase
		No specific information was found.	or decrease were
	HDV - HDV < 14 t		calculated using the methodology described
		General Results:	in the results cell of this
	no information	The effect of wind is related with the resistance from vehicle's drag within the air. This resistance could be significant especially in high speeds where it could have values up to 11% of the 20% (energy from fuel) needed for the vehicle to be dragged	vehicles and have as a baseline the initial
	HDV -	in the air. The effect in fuel consumption is described by the following equation	CO2/FC
	14 t < HDV < 28 t:	(Saharidis G. , 2013) while :	
	no information	$\mathbf{F} = CD \times A_{Frontal} \times \rho/2 \times v^3$ Eq. 3	The following calculation assumptions
		F: Power demand to overcome the air resistance [W];	were made based on literature:
	HDV -	CD: The air- resistance coefficient [dimensionless] (For buses = 0,65);	$A_{\text{frontal}}: 0.75 \text{ m2}$
	28 t < HDV:	A _{Frontal} : The frontal area [m2] of the vehicle (For buses = $6,5 \text{ m}^2$);	CD: 0.570
	no information	p: The density of the air $[kg/m3]$ (Assumed 1,225 kg/m ³);	Horsepower: 50 HP
		v: The wind velocity [m/s].	LCVs:
		As it is described in the equation the effect takes into consideration the wind speed and wind direction	The same methodology described for L-
		For LCVs the A _{frontal} and the CD are assumed as (Kühlwein, 2016):	Category was followed.

Afrontal : 4.06 The follow CD: 0.34 CD: 0.34 As general values for motorcycles were not found for the L-Category and more literature:	ors Gap Analysis N	Final Solution
specifically for motorcycles, we can assume the following values derived from a study of Fintelman et al (Fintelman D., 2015):Afrontal : 4.06 m²Afrontal : 0.75 m²CD: 0.570 (coarse mesh at 15° angle)Horsepower: 137.5 FBased on the above, wind effect in FC and consequently in CO2 emissions is directly correlated from the vehicles, frontal area and the relevant air- resistance coefficient. Based on that and since we have average Afrontal and CD for all relevant vehicle categories we could perform the relevant calculations to estimate the power demand to overcome the air resistance expressed in Watts.Horsepower: 137.5 F HDV - HDV < 14 t: The same methodo described for Category was follow The follow assumptions were n based on literature:• Assume the average horsepower capacity of each vehicle type (see below); • Transform watts into horse power (1 kW = 1.34 Horsepower); • Estimate the horse power needed to overcome the air resistance (by using the equation). Perform this calculation for different wind classes (average wind speeds); • Calculate the percentage of increase by dividing the power needed with the average nower of vehicle:Afrontal : 6.5 m² CD: 0.65HDV - HDV -	ors Gap Analysis N A C A A S S A C A B C B C F C B F F C F F	Final SolutionThefollowincalculation assumptionweremadebasedorliterature:hAfrontal:4.06 m²CD:0.34Horsepower:137.5 HPHDV - HDV < 14 t:

Factors	Gap Analysis	Main Findings (all vehicles)	Final Solution
		Assumptions for Average horsepower per vehicle category:	The same methodology
		L-Category:	described for L- Category was followed.
		Since no literature was found for average horsepower of L-category vehicle and since the article of European commission's website about safety of motorcycles (European Commision, 2019) illustrates vehicles from 10 – 90 HP (although in some cases horsepower is higher) we can make the following assumption.	The following assumptions were made based on literature:
		• L-Category: 10-90 – Average: 50 HP	$A_{frontal}: 6.5 \text{ m}^2$
		LCVs:	CD: 0.65
		According to the EQUA - Index (EQUA - INDEX - Independent real-world emissions	Horsepower: 350 HP
		data) the horsepower range between real LCVs included in their database is 74 to 201	HDV -
		HP. Based on this we can produce an average HP as follows.	28 t < HDV:
		• LCVs: 74-201 – Average: 137.5 HP	The same methodology
		HDVs – Horsepower:	(described for L-
		According to Ahanotu (Ahanotu, 1999), the HDVs horsepower ranges from 200 to	Category) was followed.
		500. Considering this, we can reclassify the range based on HDV classes and extract	The following
	a relevant horsepower average that could be used in relevant calculations (se above).	assumptions were made based on literature:	
		• HDVs < 14t: 200-300 – Average: 250 HP	$A_{frontal}: 6.5 m^2$
		 14 t < HDV < 28 t: 300-400 - Average: 350 HP 28 t < HDV: 400 - 500 - Average: 450 HP 	CD: 0.65
			Horsepower: 450 HP

Factors	Gap Analysis	Main Findings (all vehicles)	Final Solution	
			This classification was applied to all vehicle categories and emission types for the consistency of the database.	
A/C	L-category	L-category:	L-category:	
	no information	No information was found.	No values were produced for this category.	
	LCVs	LCVs:		
	no information	No specific information was found.	LCVs:	
HDV - HDV < 14 t No specific information was found.		HDV (All types): No specific information was found.	The AC effect was calculated by combining the effect from HI and the traffic modes as presented in the results	
	HDV - $144 < HDV < 28 h$	General Results: According to Konstantzos et al. (Konstantzos Giorgos, 2016) the Air Condition could significantly affect fuel consumption in HDVs and LDVs. Full load of AC depends	cabin to body ration was assumed as 20%.	
	11. 112. 201.	on traffic mode since different factors exist for idling acceleration and cruise		

Factors	Gap Analysis	Main Findings (all vehicles)	Final Solution
	no information HDV - 28 t < HDV: no information	conditions (see the definition of traffic modes) (Konstantzos Giorgos, 2016); based on relevant traffic modes (see the next row) and from the fact that for LCVs a) Idling (0 km/h), b) Acceleration (0–6 km/h) and c) Cruise (6-80 km/h) have an air condition factor of 1.365, 1.254 and 1.16 (average) respectively then we can calculate the full load of LCVs in a) No - Low traffic, b) Medium traffic and c) Heavy traffic conditions.	HDV - HDV < 14 t: The same methodology described for LCVs was followed. The volume cabin to body ration was assumed as 5%.
		For the calculation of full load of AC in other HDV categories, we assumed that there is a difference between different vehicle types since there is a difference between cabin and total vehicle volume. This difference justifies changes of the full load effect since generally HDVs have smaller cabins (compared with the whole vehicle) than LCVs. For example the below figure illustrates the dimensions of a specific van produced by a common vehicle manufacturer. This case could be assumed that is representative of a typical LCV.	HDV - 14 t < HDV < 28 t: The same methodology described for LCVs was followed. The volume cabin to body ration was assumed as 5%.
			HDV -
			28 t < HDV:
			The same methodology described for LCVs was followed. The volume cabin to body ration was assumed as 5%.

Factors	Gap Analysis	Main Findings (all vehicles)	Final Solution
			Classes: Based on the results of the equation for the 45 HI values and the 3 traffic modes, 135 AC effect classes were produced for each vehicle category.
		 Figure 8: Dimensions expressed as mm of a van provided by Mercedes-Benz (Under the bonnet: specifications, dimensions and weight of the Sprinter Panel Van). If we take only the length dimension then we can say that the cabin to body ratio in this case is around: Cabin to body ratio = (5267-2607)/5267 = 0.5 (i.e. 50%) For HDVs, we have the following figure with relevant dimensions (for HDVs) based on EU regulations. Even though there is a wide range of HDVs we can consider this case representative. 	This classification was applied to all vehicle categories and emission types for the consistency of the database.

Factors	Gap Analysis	Main Findings (all vehicles)	Final Solution
		Figure 9: Dimensions expressed as meters of an EU HGV tractor and trailer (Dings, 2012).	
		If we take only the length dimension then we can say that the cabin to body ratio in this case is around: Cabin to body ratio = (16.5-13.6)/16.5 = 0.18 (i.e. 18%) Based on this methodology we made the following assumptions:	
		 LCVs full AC effect was considered the basis of calculations (since the available data are on LCV) and has 50% cabin's to body ratio HDVs including all categories have a 18% cabin's to body ratio Moreover based on this study fuel consumption is also related with ambient temperature and humidity (the higher the temperature, the higher the A/C power usage). Based on the above and as HI illustrates temperature and humidity combinations, A/C FC could be measured with the usage of the following equation 	
		where, for HDVs <i>c</i> constant equals to -3.631541; <i>a</i> : coefficient equals to 0.072465;	

Factors	Gap Analysis	Main Findings (all vehicles)	Final Solution
		<i>b</i> coefficient equals to -0.000276; and <i>HI</i> : the Heat index. Furthermore, given that temperature and humidity are known, then heat index could be calculated by using the following function.	
		Heat Index = -42.379 + 2.04901523T + 10.14333127R - 0.22475541TR - 6.83783 x 10 ⁻³ T ² - 5.481717 x 10 ⁻² R ² + 1.22874 x 10 ⁻³ T ² R + 8.5282 x 10 ⁻⁴ TR ² - 1.99 x 10 ⁻⁶ T ² R ²	
		T: Air temperature in Fahrenheit	
		R: Relative humidity (expressed as rate %)	
		Conclusion:	
		L-Category: Since, L-Category vehicles include motorcycles, ATVs and mini cars that usually do not have A/C systems we can assume that this factor is not applied for this vehicle types.	
		LCVs and HDVs (all types):	
		The equation could be applied to all vehicle categories based on the assumptions presented above.	
		Different classes should be produced based on different HI values and different traffic modes. Such classes include the combination of the following 45 HI values and 3 traffic classes:	
		 HI: <68, 68,, 110, >110. Traffic modes: a) No - Low traffic, b) Medium traffic and c) Heavy traffic conditions 	

Factors	Gap Analysis	Main Findings (all vehicles)	Final Solution
Traffic	L-category	L-category:	L-category:
	no information	No information was found.	Based on the methodology developed in the results cell the L-
	LCVs	LCVs:	Category traffic modes
	no information	No specific information was found.	were calculated as percentage of fuel consumption increase
	HDV - HDV < 14 t	HDV (All types):	where the baseline was considered the traffic
	no information	No specific information was found.	traffic.
	HDV - 14 t < HDV < 28 t: no information	General Results: Traffic conditions, especially in urban areas and during the peak hours can significantly affect vehicle emissions (Zhang Kai, 2011). Furthermore, this study presents the following results for LDVs and HDVs and for HC, CO, NOx and CO2 emissions.	LCVs: The same methodology described for L- Category was followed.
	HDV -		HDV - HDV < 14 t:
	28 t < HDV:		
	no information		

Factors	Gap Analysis	Main Findings (all vehicles)	Final Solution
		$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	The same methodology described for L- Category was followed. HDV - 14 t < HDV < 28 t: The same methodology described for L- Category was followed.
		$\label{eq:response} \begin{array}{ c c c c c } \hline Traffic conditions & Emission density & Fuel consumption \\ \hline HC (g mi^{-1} s^{-1}) & CO (g mi^{-1} s^{-1}) & NO_{s} (g mi^{-1} s^{-1}) & CO_{2} (g mi^{-1} s^{-1}) & density (g mi^{-1} s^{-1}) \\ \hline Pree-flow conditions & 0.08 \pm 0.02 & 3.67 \pm 1.68 & 1.61 \pm 0.11 & 295 \pm 23 & 96 \pm 8 \\ \hline Rush hours & 0.13 \pm 0.03 & 7.17 \pm 2.62 & 1.72 \pm 0.13 & 426 \pm 26 & 1.41 \pm 10 \\ \hline Work zone & 0.05 \pm 0.01 & 1.54 \pm 0.39 & 1.78 \pm 0.15 & 380 \pm 30 & 120 \pm 9 \\ \hline \end{array}$	HDV - 28 t < HDV: The same methodology described for L- Category was followed.
		 hour congestion and d) Work zone classes respectively. Based on the above facts and since average speeds were very high these results were considered not representative for our database. Conclusion: Since literature results are not consistent and thus not suitable we could follow a specific methodology based on reasonable and basic facts and assumptions. Traffic could be expressed as a combination of the following vehicle's conditions: 	Classes: Finally three classes were identified for traffic conditions (a) No - Low traffic, b) Medium traffic and c) Heavy traffic).

Factors	Gap Analysis	Main Findi	ngs (all vehi	icles)					Final Solution
		 Crui Idlin Minu Num Based on the be made: 	se time ag time utes per km aber of stops e above para	s & Gos per meters, the	Km below table	e illustrates the	e assumptio	ns that could	This classification was applied in all vehicle and emission types.
		Table 1	6: Assumption Traffic Modes	ts of relevant Cruise	parameters fo Idling	or the production min/km	n of different t No of Stop&Gos	raffic modes.	
			No - Low	100%	0%	0.00	0		
			Medium	50%	50%	2.00	3		
			Heavy	30%	70%	6.00	6		
		Based on f consumption database). A Pradeep, 207 • L-Ca • LCV • HDV • 14 t • HDV FC for one methodolog vehicle cates	the above to n for each vo According to 15) the const tegory (aver s: 0.530 lt/h 7 - HDV < 14 < HDV < 28 7 - 28 t < HD Stop & Go gy and the ini- gories:	traffic effe ehicle categ o a study umption du rage from 2 4 t: 0.621 lt/ t: 1.002 lt/ t: 1.002 lt/ V: 2.514 lt/ O was cal- itial consum	ct could b gory and the performed uring idling wheelers a 'h n 'h culated bas nption. The	e calculated e baseline FC in different could be the nd three whe sed on (Kons FC for the fol	by having (already ava cities in Ir following: elers): 0.180 stantzos Gi lowing for tl	g the idling ailable in the adia (Kumar lt/h orgos, 2016) he respective	

Factors	Gap Analysis	Main Findings (all vehicles)	Final Solution
		 L-Category: 24.52 grams of fuel LCVs: 56.25 grams of fuel HDV - HDV < 14 t: 137.75 grams of fuel HDV - 14 t < HDV < 28 t: 137.75 grams of fuel HDV - 28 t < HDV: 137.75 grams of fuel The fuel density was assumed as 0.832 kg/l. Based on the above information the effect of traffic conditions in FC could be calculated. The class that represents no traffic should be used as the baseline FC.	

4.3.2.3 CH4

Table 17: Emission Factors for CH4 - Gap analysis results, findings and applied solutions (in GYR database)

Factors	Missing Info	Main Findings	Comments
Occupancy	L-category	L-category:	L-category:
	no information	No information was found.	No values were produced for this category.
	LCVs	LCVs:	
	no information	No information was found.	LCVs:
	HDV - HDV < 14 t no information	HDV (All types): No information was found.	The occupancy effect was calculated by using the percentage increase in FC and multiplied with actual CH4 values for all LCVs types (including euro categories etc.).
	HDV -	Conclusion:	
	14 t < HDV < 28 t:	L-Category: Since, L-Category vehicles include motorcycles, ATVs and	HDV - HDV < 14 t:
	no information	mini cars that usually do not have important storage capacity we can assume that they are not affected by load or additional load is not applied for those cases.	The same methodology with LCV was followed.
	HDV -		
	28 t < HDV:	For other vehicle categories we perform the following assumption:	HDV -

Factors	Missing Info	Main Findings	Comments
	no information	Since the CH4 is linearly and positively correlated with CO2 emissions (Nam EK, 2004) and since occupancy affects directly the fuel consumption, then we can assume that methane follows the same pattern with FC. Since FC results are available for different occupancy classes and as a percentage of FC increase, the same percentage could be used assuming that the more the fuel consumed the more the CH4 produced (i.e. linear correlation). This solution supports also the consistency of the database.	14 t < HDV < 28 t:The same methodology with LCV was followed.HDV -28 t < HDV:The same methodology with LCV was followed.
Road	L-category	L-category:	L-category:
Conditions	no information	No information was found.	The road conditions effect was calculated by using the percentage increase in FC (calculated as
	LCVs	LCVs:	presented in the FC/CO2 table) and
	no information	No information was found.	for all L-category types (including euro categories etc.).
	HDV - HDV < 14 t	HDV (All types):	
	no information	No information was found.	LCVs:
			The same methodology with L-Category was followed.

Factors	Missing Info	Main Findings	Comments
	HDV -	Conclusions:	
	14 t < HDV < 28 t:	Since the CH4 is linearly and positively correlated with CO2 emissions	HDV - HDV < 14 t:
	no information	(Nam EK, 2004) and since road conditions affects directly the fuel consumption, then we can assume that methane follows the same pattern with FC. Since FC results are available for all 15 classes and as	The same methodology with L- Category was followed.
	HDV -	a percentage of FC increase, the same percentage could be used assuming that the more the fuel consumed the more the CH4 produced	
	28 t < HDV:	(linear correlation). This solution supports also the consistency of the	HDV -
	no information	database.	14 t < HDV < 28 t:
			The same methodology with L-Category was followed.
			HDV -
			28 t < HDV:
			The same methodology with L- Category was followed.
Road	L-category	L-category:	L-category:
gradient	no information	No information was found.	The road gradient effect was calculated by using the percentage increase in FC (calculated as
	LCVs	LCVs:	presented in the FC/CO2 table) and

Factors	Missing Info	Main Findings	Comments
	no information	No information was found.	multiplied with actual CH4 values for all L-category types (including euro categories etc.).
	HDV – HDV < 14 t	HDV (All types):	
	no information	No information was found.	LCVs:
	HDV -	Conclusions:	The same methodology with L- Category was followed.
	14 t < HDV < 28 t:	Since the CH4 is linearly and positively correlated with CO2 emissions	
	no information	(Nam EK, 2004) and since gradient affects directly the fuel consumption, then we can assume that methane follows the same	HDV - HDV < 14 t:
	HDV -	pattern with FC. Since FC results are available for all 9 classes (gradient from +6% to -6%) and as a percentage of FC increase, the same percentage could be used assuming that the more the fuel consumed	The same methodology with L- Category was followed.
	28 t < HDV:	the more the CH4 produced (i.e. linear correlation) and the opposite.	
	no information	This solution supports also the consistency of the database.	HDV -
			14 t < HDV < 28 t:
			The same methodology with L-Category was followed.
			HDV -
			28 t < HDV:

Factors	Missing Info	Main Findings	Comments
			The same methodology with L-Category was followed.
Type of Fuel	L-categoryInformation for Diesel and PetrolLCVsInformation for Diesel and PetrolHDV - HDV < 14 t: Information for 	 L-category: No information was found. LCVs: Moreover for LPG fuel the article of Lipman and Dellucchi (Lipman Timothy, 2002) suggest that for LPG LDVs there is not a difference with petrol LDVs, as the main component of LPG (Propane) has similar properties with petrol. Moreover, for the Natural gas fueled LDVs the CH4 emissions are between 0.6 and 4 g/mi for dual fuel vehicles and 0.13 to 3 g/mi for natural gas only vehicles. HDV (All types): The same study suggests that new LPG HDV vehicles are emitting around 0.1 g/mi CH4 which is similar with the diesel ones). Moreover, CH4 emissions for vehicles with engines that use natural gas (NG) are presented in the electronic article of Stettler et al (Marc Stettler, 2019). The article presents the following methane emissions: 	 Category was followed. L-category: No additional fuel types were illustrated in this category. LCVs: Emission factors for LPG and CNG fuel types were produced for LCVs. The values of CH4 were based on relevant passenger car vehicles as provided by COPERT model. For electricity powered LCVs the average value of 0.310 KWh/km was used for all LCVs sub-types of the database. The CH4 emissions were calculated by using the
	Information for Diesel and Petrol		average emission factor of 2.05 g/KWh. HDV - HDV < 14 t:

Factors	Missing Info	Main Findings						Comments		
	HDV -	Vehicle Type	Fuel	Engine	r	Aethane Emis	sions [%]		Source	Emission factors for LPG and CNG
				Туре	Avg.	Std	Min	Max	-	fuel types were produced for HDVs
	28t < HDV:		NG	SIS	0.253	0.294	0.002	1.335	[20, 22, 47, 48, 51]	(<14 t). The values of CH4 were
	Information for	Freight Truck	NG	HPDI	0.612	0.166	0.353	0.871	[20]	based on relevant buses vehicles as
	Diesel and Petrol		NG	DF	11.769	6.333	0.292	29.157	[10, 22, 48]	provided by COPERT model.
		Refuse Truck	NG	SIS	0.353	0.260	0.108	0.979	[20]	
			NG	SIS	0.783	0.283	0.096	1.048	[20, 54, 55]	
		Transit Bus	NG	SILB	4.146	1.775	0.723	9.440	[53-55, 61]	
			Diesel	CI	0.011	0.009	0.000	0.038	[53, 61]	HDV -
		 Figure 12: "Tailpipe methane emissions quantified as methane slip for various vehicle and engine types." (Marc Stettler, 2019). Electric Vehicles: Emissions from Electricity 				slip for	No additional fuel types were illustrated in this category.			
		Since all ev	clusive	electric v	ehicles are	charged	l using t	he orid	then the	HDV -
		emissions (are defined country for In this fran (ECOINVE)	Since all exclusive electric vehicles are charged using the grid, then the emissions (including CH4) produced from vehicles with this fuel type are defined by the emissions types and volumes produced in each country for the grids electricity production. In this framework the EU average CH4 is 2.05 grams per KWh (ECOINVENT).					28 t < HDV: No additional fuel types were illustrated in this category.		
		Conclusion	ns:							

Factors	Missing Info	Main Findings	Comments
		L-Category: Since, L-Category vehicles include motorcycles, ATVs and mini cars that usually do not have alternative fuel types we can assume that the provision of values for relevant fuel types is not necessary.	
		Since COPERT model provides with CNG and LPG CH4 values for passenger cars and buses, then we can use the relevant passenger cars (the most similar with LCVs – i.e. Large-SUV) to calculate the emissions for LCVs and the relevant Buses to calculate the emissions for HDVs.	
		Moreover, for electricity powered vehicles we can use the average CH4 emitted per KWh in Europe and multiply it with consumption expressed as KWh/km. The average consumption was assumed as 0.31 KWh/Km.	
Wind	L-category	L-category:	L-category:
	no information	No information was found.	The wind effect was calculated by using the percentage increase in FC (calculated as presented in the
	LCVs no information	LCVs: No information was found.	FC/CO2 table) and multiplied with actual CH4 values for all L-category types (including euro categories etc.).

Factors	Missing Info	Main Findings	Comments
	HDV - HDV < 14 t	HDV (All types):	
	no information	No information was found.	LCVs:
	HDV -	Conclusions:	The same methodology with L- Category was followed.
	14 t < HDV < 28 t:	Since the CH4 is linearly and positively correlated with CO2 emissions	
	no information	(Nam EK, 2004) and since wind affects directly the fuel consumption,	HDV - HDV < 14 t:
		then we can assume that methane follows the same pattern with FC. Since FC results are available for all 9 classes (wind from 40-80km/h to $40 - 80$ km/h to	The same methodology with L- Category was followed.
	HDV -	could be used assuming that the more the fuel consumed the more the	
	28 t < HDV:	CH4 produced (i.e. linear correlation) and the opposite. This solution	HDV -
	no information	supports also the consistency of the database.	14 t < HDV < 28 t:
			The same methodology with L- Category was followed.
			HDV -
			28 t < HDV:
			The same methodology with L- Category was followed.

Factors	Missing Info	Main Findings	Comments
A/C	L-category	L-category:	L-category:
	no information	No information was found.	No values were produced for this category.
	LCVs	LCVs:	
	no information	No information was found.	LCVs:
	HDV - HDV < 14 t no information	HDV (All types): No information was found.	The A/C effect was calculated by using the percentage increase in FC (as presented in FC/CO2 table) and multiplied with actual CH4 values for all LCVs types (including euro categories etc.).
	HDV -	Conclusions:	
	14 t < HDV < 28 t:	L-Category: Since, L-Category vehicles include motorcycles, ATVs and mini cars that usually do not have A/C systems we can assume that this factor is not applied for this vehicle types.	HDV - HDV < 14 t:
	no information		The same methodology with LCV was followed.
		Since the CH4 is linearly and positively correlated with CO2 emissions	
	HDV -	(Nam EK, 2004) and since A/C affects directly the fuel consumption, then we can assume that methane follows the same pattern with FC.	HDV -
	28 t < HDV:	Since FC results are available for all 135 AC classes and are expressed	14 t < HDV < 28 t:
	no information	as a percentage of FC increase, the same percentage could be used assuming that the more the fuel consumed the more the CH4 produced (i.e. linear correlation) and the opposite. This solution supports also the consistency of the database.	The same methodology with LCV was followed.

Factors	Missing Info	Main Findings	Comments
			HDV - 28 t < HDV:
			The same methodology with LCV was followed.
Traffic	L-category	L-category:	L-category:
	no information	No information was found.	The traffic effect was calculated by using the percentage increase in FC (calculated as presented in the
	LCVs no information	LCVs: No specific information was found.	FC/CO2 table) and multiplied with actual CH4 values for all L-category types (including euro categories etc.).
	HDV - HDV < 14 t	HDV (All types):	
	no information	No specific information was found.	LCVs:
	HDV -	Conclusion:	The same methodology described for L-Category was followed.
	14 t < HDV < 28 t: no information	Since the CH4 is linearly and positively correlated with CO2 emissions (Nam EK, 2004) and since traffic affects directly the fuel consumption, then we can assume that methane follows the same pattern with FC.	HDV - HDV < 14 t:

HDV -Since FC results are available for all 3 traffic classes and as a percentage of FC increase, the same percentage could be used assuming that the forThe for	
28 t < HDV:	The same methodology described for L-Category was followed. HDV - 14 t < HDV < 28 t: The same methodology described for L-Category was followed. HDV - 28 t < HDV: The same methodology described for L-Category was followed.

4.3.2.4 CO

Table 18: Emission Factors for CO - Gap analysis results, findings and applied solutions (in GYR database)

Factors	Missing Info	Main Findings	Comments
Occupancy	L-category no information	L-category: No specific information was found.	L-category: No values were produced for this category.
	LCVs no information	LCVs: No specific information was found for LCVs.	LCVs: The occupancy effect was
	HDV - HDV < 14 t: COPERT provides data (3 classes) HDV - 14 t < HDV < 28 t:	W - HDV < 14 t:HDV (All types): PERT provides a (3 classes)No specific information was found for LCVs. OV -General Results: There are no articles for occupancy effect on LCVs and L-categories CC emissions. Nevertheless Yu et al (Qian Yu, 2016) measured CO emissions or urban busses in four passenger load categories and found the results as presented	percentage increase described in the vehicles included in the type: HDV>3.5 t of COPERT. This increase in CO emissions was applied to all LCVs based on the respective euro categories.
	data (3 classes)	in the following graph. The results show that the emission volumes are strongly related with speed.	

Factors	Missing Info	Main Findings	Comments
	28 t < HDV: COPERT provides data (3 classes)	Image: system of the system	
		Conclusion: L-Category: Since, L-Category vehicles include motorcycles, ATVs and mini cars that usually do not have important storage capacity we can assume that they are not affected by load or additional load is not applied for those cases.	

Factors	Missing Info	Main Findings	Comments
		LCVs: The information provided from the above article presented only actual fuel consumptions and focused only on buses, thus it was considered not representative for LCVs.	
		In this context, values based on HDV occupancy effect (expressed as rates) as described in COPERT is considered a more reliable solution for LCVs occupancy estimation on CO emissions.	
Road	L-category	L-category:	L-category:
Conditions	no information	No specific information was found.	Interpolation was performed by using the limits presented in the
	LCVs	LCVs:	table 19 and based on 15
	no information	No specific information was found for LCVs.	values.
	HDV - HDV < 14 t no information	HDV (All types): No specific information was found for LCVs.	corresponds to the basic emissions of our database and refers to excellent road conditions.
	HDV -	General Results:	LCVs:
	14 t < HDV < 28 t:	As illustrated for the case of CO2/FC factor, in the article of Setyawan et al	
	no information	(Setyawan, 2015) the effect of road condition was examined using "PCI (i.e. Pavement Condition Index)" method and found that road conditions affect the	

Factors	Missing Info	Main Findings				Comments
	HDV - 28 t < HDV:	speed of the vehicle a emissions. For excellent illustrated in the followi Table 19: emissions v	nd conseque to very poor ing table: alues for CO (re	ently the total am pavement conditio	oount of CO and other ons the results for CO are oad conditions) derived from	The same methodology described for L-Category was followed.
	no information	(Setyawan, 2015) expressed a	ns rates (%) com PCI	pared with values in ex CO Increase (%)	xcellent road conditions.	HDV - HDV < 14 t:
			19	2.76		The same methodology
			34	0.87	-	was followed.
			43	0.59		
			59	0.25		
			79	0.05		HDV -
			100	0.02		14 t < HDV < 28 t:
		PCIs Described in the a "fair", "poor" and "ver values respectively.	rticle are refe ry poor″ roa	erring to "excellent d conditions for 10	, "very good", "good", 0, 79, 60,44, 34, 19 PCI	The same methodology described for L-Category was followed.
						HDV -
		Conclusion:				28 t < HDV:
		For the calculation and an interpolation based our database. PCI tra	production of on the above nsformation	of CO values for thi table and the defin to year classes i	is factor we can perform ned classes (15 years) in s performed based on	The same methodology described for L-Category was followed.

Factors	Missing Info	Main Findings	Comments
		qualitative characteristics described above and from the fact that road age expresses directly the road quality.	
		Based on the above we can perform the following assumption in order to make the interpolation:	
		 PCI 100 equals to the basic emissions (Road age is zero) – No increase at all PCI 19 equals to the fifteenth class (15th year) 	
Road	L-category	L-category:	L-category:
gradient	no information	No information was found.	The same methodology with LCVs was followed.
	LCVs	LCVs:	
	no information	In the study of Zhang et al (Wendan Zhang, 2015) a literature review for the effect	LCVs:
		of road gradient in vehicular emissions was performed. This review is presented in the Figure 4: "Studies on the changes of fuel consumption and emissions with	The Road gradient effect
	HDV - HDV < 14 t:	the change of road grades".	percentage increase of CO
	COPERT provides data (13 classes - From -0.06 to 0.06 (per 0.02)	As described in the FC/CO2 table these results are not consisted thus they are not suitable for usage in the database.	illustrated in the vehicles included in the type: HDV>3.5 t of COPERT. This increase was applied to all LCVs based on the respective euro categories.
	HDV -	Conclusion:	

Factors	Missing Info	Main Findings	Comments
	14 t < HDV < 28 t:	Since gradient affects directly the fuel consumption and since the CO is a product of non complete combustion (Nilrit S., 2013), then we can assume that CO follows the same pattern with other FC affected emissions. Moreover, COPERT provides with road gradient effect for HDVs. In this context, values based on HDV occupancy effect (expressed as rates) as described in COPERT is considered a more reliable solution for LCVs occupancy estimation on NOx emissions.	
Type of Fuel	L-category Information for Diesel and Petrol LCVs Information for Diesel and Petrol	L-category: No information was found. LCVs: No information was found. HDV (All types):	L-category: L-category: No additional fuel types were illustrated in this category. LCVs:

Factors	Missing Info	Main	Find	ings										Comments
	HDV - HDV < 14 t:	CO er preser the fol	nissi ited lowi	ions fo in the ing CC	or HDV article o exhaus	vehic of Stett st emis	les witl ler et al sions as	n engii (Marc illustr	nes tha Stettle rated in	t use r r, 2019) the fol	natural). The a lowing	gas (N article p table:	NG) are presents	Emission factors for LPG and CNG fuel types were produced for LCVs. The
	Information for Diesel and Petrol	Vehicle Type	Fuel	Engine Type	NM [g/k	IHC (m]	NC [g/k)x (m]	C [g/	O km]	P [mg,	M /km]	Source	on relevant passenger car
	HDV - 14 t < HDV < 28 t: Information for Diesel and Petrol	Freight Truck Refuse Truck Transit Bus	D NG NG D NG NG NG	CI SIS DF HPDI CI SIS CI SILB SIS	Avg. 0.003 0.031 - 0.034 0.017 0.328 - 1.124 0.094	Std 0.004 0.031 - 0.023 0.004 0.519 - 0.125 0.056	Avg. 2.244 0.294 4.889 0.425 0.630 0.145 13.591 13.958 0.716	std 4.480 0.508 4.932 0.106 0.172 0.194 9.204 9.125 0.636	Avg. 1.353 3.727 7.730 0.040 0.050 11.085 0.189 0.387 13.074	Std 1.957 2.255 8.048 0.017 0.006 6.451 0.284 0.492 12.675	Avg. 4.492 3.665 31.204 2.748 4.801 3.237 13.642 15.100 2.106	Std 1.920 2.523 23.843 1.056 1.225 1.834 11.689 15.258 2.647	[48-50] [47-51] [48, 49] [65] [50] [50, 52] [53, 55] [50, 54- 57]	vehicles as provided by COPERT model. For electricity powered LCVs the average value o 0.310 KWh/km was used for all LCVs sub-types c
	HDV - 28 t < HDV: Information for Diesel and Petrol	Since a the res idea is that ha Electri Since a (include	Fig stand sults s sup ave s ic V all ev ding	ure 14: " diese dard d of illu oportec specific ehicles <u>from I</u> cclusiv CO) J	Summar and nation strated al also by type of Electrici e electrici produce	y of othe ural gas n of CC on the y the fa f engin <u>ty</u> ic vehic	er air pol heavy go 1 is hig table co act that es. cles are n vehicl	lutant er oods veh her tha uld no the art charge es with	missions icles." (I in or al t be cor icle ref d using h this f	g the gri	ed by dif ttler, 201 s high d repre pecific id, then	fferent ty 19). as the a sentativ type of type of the en defined	ypes of average ve. This f HDVs hissions by the	emissions were calculated by using the average emission factor of 194.37 mg/KWh. HDV - HDV < 14 t: Emission factors for LPG and CNG fuel types were produced for HDVs (<14 t). The values of CO were based on relevant buses

Factors	Missing Info	Main Findings	Comments
		emissions types and volumes produced in each country for the grids electricity production.	vehicles as provided by COPERT model.
		In this framework the EU average CO is 194.38 mg per KWh (ECOINVENT).	
			HDV -
		Conclusion:	14 t < HDV < 28 t:
		L-Category: Since, L-Category vehicles include motorcycles, ATVs and mini cars that usually do not have alternative fuel types we can assume that the provision of values for relevant fuel types is not necessary.	No additional fuel types were illustrated in this category.
		Since COPERT model provides with CNG and LPG CO2/FC values for passenger cars and buses, then we can use the relevant passenger cars (the most similar with LCVs – i.e. Large-SUV) to calculate the emissions for LCVs and the relevant Buses to calculate the emissions for HDVs.	HDV - 28 t < HDV: No additional fuel types were illustrated in this category
		Moreover, for electricity powered vehicles we can use the average CO emitted per KWh in Europe and multiply it with consumption expressed as KWh/km. The average consumption was assumed as 0.31 KWh/Km.	category.
Wind	L-category	L-category:	L-category:
	no information	No information was found.	The wind effect was calculated by using the percentage increase in FC (calculated as presented in

Factors	Missing Info	Main Findings	Comments
	LCVs no information	LCVs: No information was found.	the FC/CO2 Table) and multiplied with actual CO values for all L-category types (including euro
	HDV - HDV < 14 t	HDV (All types):	categories etc.).
	no information	No information was found.	LCVs:
	HDV -		The same methodology with L-Category was
	14 t < HDV < 28 t:	Conclusions:	followed.
	no information	Since wind affects directly the fuel consumption and since the CO is a product of non complete combustion (Nilrit S., 2013), then we can assume that CO follows the same pattern with FC. Since FC results are available for all 9 classes (wind	HDV - HDV < 14 t:
	HDV -	from 40-80km/h to -4080km/h) and as a percentage of FC increase, the same	The same methodology
	28 t < HDV:	percentage could be used assuming that the more the fuel consumed the more the CO produced (linear correlation) and the opposite. This solution supports	with L-Category was followed.
	no information	also the consistency of the database.	
			HDV -
			14 t < HDV < 28 t:
			The same methodology with L-Category was followed.

Factors	Missing Info	Main Findings	Comments
			HDV - 28 t < HDV: The same methodology with L-Category was followed.
A/C	L-category	L-category:	L-category:
	no information	No information was found.	No values were produced for this category.
	LCVs	LCVs:	
	no information	No information was found.	LCVs: The A/C effect was calculated by using the
	HDV - HDV < 14 t	HDV (All types):	percentage increase in FC
	no information HDV -	No information was found.	(as presented in FC/CO2 Table) and multiplied with actual CO values for all LCVs types (including euro categories etc.).
	14 t < HDV < 28 t:	Conclusions:	

Factors	Missing Info	Main Findings	Comments
	no information HDV -	L-Category: Since, L-Category vehicles include motorcycles, ATVs and mini cars that usually do not have A/C systems we can assume that this factor is not applied for this vehicle types.	HDV - HDV < 14 t: The same methodology with LCV was followed.
	28 t < HDV: no information	Since A/C affects directly the fuel consumption and since the CO is a product of non complete combustion (Nilrit S., 2013), then we can assume that CO follows the same pattern with FC. Since FC results are available for all 135 AC classes and are expressed as a percentage of FC increase, the same percentage could be used assuming that the more the fuel consumed the more the CO produced (linear correlation) and the opposite. This solution supports also the consistency of the database.	HDV - 14 t < HDV < 28 t: The same methodology with LCV was followed. HDV - 28 t < HDV: The same methodology with LCV was followed.
Traffic	L-category	L-category:	L-category:
	no information	No information was found.	The traffic effect was calculated by using the percentage increase in FC
	LCVs no information	LCVs: No specific information was found.	(calculated as presented in the FC/CO2 table) and multiplied with actual CO

Factors	Missing Info	Main Findings	Comments
	HDV - HDV < 14 t no information	HDV (All types): No specific information was found.	values for all L-category types (including euro categories etc).
	HDV - 14 t < HDV < 28 t: no information	General Results: In Zhang et al (Zhang Kai, 2011) study we have CO and other emissions results related with congestion as already presented in Figure 10: "Summary of speed/acceleration profiles, emission factors and fuel consumption rates for LDV and HDV grouped by traffic condition.".:	LCVs: The same methodology described for L-Category was followed. HDV - HDV < 14 t:
	HDV - 28 t < HDV: no information	As it is discussed in the table FC/CO2 the results of the study are not suitable for the database.	The same methodology described for L-Category was followed.
		Conclusion: Since CO could be considered that follows the same pattern with FC (see previous results), then we could multiply increase rates for different traffic conditions in FC with the actual and initial values of CO.	HDV - 14 t < HDV < 28 t: The same methodology described for L-Category was followed.

Factors	Missing Info	Main Findings	Comments
			HDV - 28 t < HDV: The same methodology described for L-Category was followed.

Table 20: Emission Factors for N2O - Gap analysis results, findings and applied solutions (in GYR database)

Factors	Missing Info	Main Findings	Comments
General N2O emissions for LCVs	L-category no information LCVs no information	 LCVs: Lipman and Delucchi (Lipman Timothy, 2002) presented a table (A-I) with measured N2O values for different LCVs derived from different studies. Based on this study and as the N2O concentrations are very low we can assume the following roughly estimated emission factors based on this table: Petrol LDVs: 150 mg/mi (93 mg/km) N2O; Diesel LDVs: 80 mg/mi (50 mg/km) N2O. 	LCVs: The LCV N2O emissions were calculated based on the smallest HDV vehicle type and followed the relative results for different euro categories and emission reduction technologies.
	HDV - HDV < 14 t no information HDV - 14 t < HDV < 28 t:	Nevertheless, N2O emissions are seriously affected by catalysts and generally emission reduction systems and regulations (Euro categories), while this results are generalized. Furthermore, emission factors are generally very low and thus there are measurement issues (high standard deviations etc.).	
	no information HDV - 28 t < HDV:	Conclusion: As literature results are very general and don't reflect the complicacy of real world fleets then the N2O emissions of LCV vehicles could be produced by using HDV relevant values. This could be performed by using the COPERT model and the values given for the smallest HDV.	

GREEN YOUF ROUTE

Factors	Missing Info	Main Findings	Comments
	no information		
Occupancy	L-category	L-category:	L-category:
I i ij	no information	No information was found.	No values were produced for this category.
	LCVs	LCVs:	
	no information	No information was found.	LCVs:
	HDV - HDV < 14 t no information	HDV (All types): No information was found.	Based on the assumptions made. The N2O followed the same pattern with NOx and according to euro category and emission reduction technology.
	HDV -	Conclusion:	HDV - HDV < 14 +
	14 t < HDV < 28 t: no information	L-Category: Since, L-Category vehicles include motorcycles, ATVs and mini cars that usually do not have important storage capacity we can assume that they are not affected by load or additional load is not applied for those cases.	The same methodology described for LCV was followed.
	HDV -		HDV -
	28 t < HDV:	There is no information provided by literature or COPERT on effect of occupancy in N2O emissions. Since the N2O is related with NOY and the	14 t < HDV < 28 t:
	no information	emission reduction technology we can assume that they follow the same	

Factors	Missing Info	Main Findings	Comments
		pattern. More specifically, for the estimation of the increase of N2O as a result of the occupancy effect, NOx relevant increase rates should be used for both HDVs and LCVs. The relative increase should take into consideration euro categories and emission reduction technologies.	The same methodology described for LCV was followed. HDV - 28 t < HDV: The same methodology described for LCV was followed.
Road Conditions	L-category no information LCVs no information	L-category: No information was found. LCVs: No information was found.	L-category: Based on the assumptions made. The N2O followed the same pattern with NOx and according to euro category and emission reduction technology.
	HDV - HDV < 14 t no information	HDV (All types): No information was found.	LCVs: The same methodology described for L-Category was followed.
	HDV - 14 t < HDV < 28 t:	Conclusion: There is no information provided by literature or COPERT on N2O emissions and road conditions. Since the N2O is related with NOx and	HDV - HDV < 14 t:

Factors	Missing Info	Main Findings	Comments
	no information HDV - 28 t < HDV: no information	the emission reduction technology we can assume that they follow the same pattern. More specifically, for the estimation of the increase of N2O as a result of the road conditions, NOx relevant increase rates should be used for both HDVs and LCVs. The relative increase should take into consideration euro categories and emission reduction technologies.	The same methodology described for L-Category was followed. HDV - 14 t < HDV < 28 t: The same methodology described for L-Category was followed. HDV - 28 t < HDV: The same methodology described
Road gradient	L-category no information	L-category: No information was found.	for L-Category was followed. L-category: Based on the assumptions made. The N2O followed the same pattern
	LCVs no information	LCVs:	The N2O followed the same pattern with NOx and according to euro category and emission reduction technology.

Factors	Missing Info	Main Findings	Comments
	HDV - HDV < 14 t no information HDV - 14 t < HDV < 28 t: no information	In the article of Lipman and Dellucchi (Lipman Timothy, 2002) ^{Error!} ^{Bookmark not defined.} is presented that road slope does not have an effect in diesel LDVs and has a negative effect in petrol LDVs (the higher the slope the lower the N20). The same happens with the increase of speed. More specifically a petrol vehicle produced N2O emissions from 2.6 mg/mi to 0.3 mg/mi for speeds 37 and 62 mi/h respectively and from 1.3 mg/mi to 0.6 mg/mi for gradients 2 and 4% respectively (stable speed at 27 mi/h). The results of the study present very high uncertainty and are very	 LCVs: The same methodology described for L-Category was followed. HDV - HDV < 14 t: The same methodology described for L Category descr
	HDV -	HDV (All types):	for L-Category was followed.
	28 t < HDV: no information	No information was found.	14 t < HDV < 28 t: The same methodology described
		Conclusion:	for L-Category was followed.
		Since the literature results are general and they are based on previous old studies (1995) and furthermore, since engines and emission reduction technologies have been highly developed during that period (1995 – 2019) they cannot be considered as representative.	HDV - 28 t < HDV:
		Since the N2O is related with NOx and the emission reduction technology we can assume that they follow the same pattern. More specifically, for the estimation of the increase of N2O as a result of the road gradient effect NOx relevant increase rates should be used for both	The same methodology described for L-Category was followed.

Factors	Missing Info	Main Findings	Comments
		HDVs and LCVs. The relative increase should take into consideration euro categories and emission reduction technologies.	
Type of Fuel	L-category Information for Diesel and Petrol	L-category: No specific information was found.	L-category: No additional fuel types were illustrated in this category.
	LCVs Information for Diesel and Petrol HDV - HDV < 14 t: Information for Diesel and Petrol	LCVs: No specific information was found for LCVs. HDV (All types): N2O emissions for vehicles with engines that use natural gas (NG) are presented in the article of Stettler et al (Marc Stettler, 2019). The article presents the following N2O emissions as illustrated in the following table:	LCVs: Emission factors for LPG and CNG fuel types were produced for LCVs. The values of N2O were based on relevant Passenger car vehicles as provided by COPERT model. For electricity powered LCVs the
	HDV - 14 t < HDV < 28 t: Information for Diesel and Petrol		average value of 0.310 KWh/km was used for all LCVs sub-types of the database. The N2O emissions were calculated by using the average emission factor of 13.78 mg/KWh.

Factors	Missing Info	Main Findings	6						Comments
		Vehicle Type	Fuel	Engine Type	N2	O Emissi	ons [g/ki	m]	HDV - HDV < 14 t:
	HDV -				Avg.	Std	Min	Max	Emission factors for LPG and CNG
	28 t < HDV: Information for Diesel and Petrol	Freight Truck Refuse Truck Transit Bus	Diesel NG NG Diesel NG NG	CI SIS HPDI CI SIS SIS	0.028 0.004 0.587 0.000 0.071 0.021	0.008 0.005 0.971 0.000 0.084 0.013	0.019 0.000 0.052 0.000 0.006 0.006	0.037 0.012 3.517 0.000 0.255 0.047	fuel types were produced for HDVs (<14 t) based on values from Buses presented in COPERT. The values of N2O were based on relevant buses vehicles as provided by COPERT model
		Figure 15 natural gas en The above tab HDVs. In most than average N adequate for cu	: "Summar gines". Re le prese: cases of 2O emis urrent da	ry of the N2O em sults presented a Stettler, 2 nts very gener NG fueled ve sions, meaning tabase.	issions pro s defined i 019). ral resul hicle star ; that the	n different ts that of ndard do level of	v various nt studies do not eviatior uncerta	diesel and s″ (Marc reflect all ı is higher inty is not	HDV - 14 t < HDV < 28 t: No additional fuel types were illustrated in this category.
		Electric Vehicl Emissions from Since all excluse emissions (incl are defined by country for the	es: <u>n Electric</u> sive elect uding N 7 the en grids ele	<u>iity</u> ric vehicles are 2O) produced nissions types ectricity produ	e chargeo from ve and vol ction.	l using hicles w umes p	the gric vith this roduce	l, then the fuel type d in each	HDV - 28 t < HDV: No additional fuel types were illustrated in this category.

Factors	Missing Info	Main Findings	Comments
		In this framework the EU average N2O is 13.78 mg per KWh (ECOINVENT).	
		Conclusions:	
		L-Category: Since, L-Category vehicles include motorcycles, ATVs and mini cars that usually do not have alternative fuel types we can assume that the provision of values for relevant fuel types is not necessary.	
		Since COPERT model provides with CNG and LPG CO2/FC values for passenger cars and buses, then we can use the relevant passenger cars (the most similar with LCVs – i.e. Large-SUV) to calculate the emissions for LCVs and the relevant Buses to calculate the emissions for HDVs.	
		Moreover, for electricity powered vehicles we can use the average N2O emitted per KWh in Europe and multiply it with consumption expressed as KWh/km. The average consumption was assumed as 0.31 KWh/Km.	
Wind	L-category	L-category:	L-category:
	no information	No information was found.	The wind effect was calculated by using the percentage increase in NOx (calculated as presented in the NOx table) and multiplied with

Factors	Missing Info	Main Findings	Comments
	LCVs no information	LCVs: No information was found.	actual N2O values for all L-category types (including euro categories etc.).
	HDV - HDV < 14 t no information	HDV (All types): No information was found.	LCVs: The same methodology with L- Category was followed.
	HDV -	Conclusions:	
	14 t < HDV < 28 t: no information HDV - 28 t < HDV:	Since the N2O is related with NOx and the emission reduction technology we can assume that they follow the same pattern. More specifically, for the estimation of the increase of N2O as a result of the wind effect, NOx relevant increase rates (see NOx table) should be used for both HDVs and LCVs. The relative increase should take into consideration euro categories and emission reduction technologies.	HDV - HDV < 14 t: The same methodology with L- Category was followed. HDV -
	no information		 14 t < HDV < 28 t: The same methodology with L-Category was followed. HDV - 28 t < HDV:

Factors	Missing Info	Main Findings	Comments
			The same methodology with L- Category was followed.
A/C	L-category	L-category:	L-category:
	no information	No information was found.	No values were produced for this category.
	LCVs	LCVs:	
	no information	No information was found.	LCVs:
	HDV - HDV < 14 t no information	HDV (All types): No information was found.	The A/C effect was calculated by using the percentage increase in NOx (as presented in NOx table – Results for AC emission factor) and multiplied with actual N2O values for all LCVs types (including euro
	HDV -	Conclusions:	categories etc.).
	14 t < HDV < 28 t: no information	L-Category: Since, L-Category vehicles include motorcycles, ATVs and mini cars that usually do not have A/C systems we can assume that this factor is not applied for this vehicle types.	HDV - HDV < 14 t: The same methodology with LCV was followed.
	HDV -	Since the N2O is related with NOx and the emission reduction	
	28 t < HDV:	technology we can assume that they follow the same pattern. More specifically, for the estimation of the increase of N2O as a result of the	HDV -

Factors	Missing Info	Main Findings	Comments
	no information	AC effect, NOx relevant increase rates (see NOx table) should be used for both HDVs and LCVs. The relative increase should take into consideration euro categories and emission reduction technologies.	14 t < HDV < 28 t: The same methodology with LCV was followed.
			HDV -
			28 t < HDV:
			The same methodology with LCV was followed.

4.3.2.6 NH3

Table 21: Emission Factors for NH3 - Gap analysis results, findings and applied solutions (in GYR database)

Factors	Missing Info	Main Finding	ţs							Comments
General	L-category	LCVs:								LCVs:
NH3 emissions for LCVs.	Information is provided by COPERT	Values of NH volume ratios tables present	H3 for LCV with CO2 values for	/s are pro that are r different	esented nultiplie types of	in followi ed by 10,00 vehicles.	ing tables 00 (David	, while the C. Carslaw	ey represer v, 2013,). Th	the LCV NH3 emissions were calculated based on the smallest HDV vehicle type
	mouel.	Vehicle type	Fuel/type	Euro class	п	NO _x	NO ₂	NO ₂ /NO _x (%)	NH ₃	and followed the felative
	LCVs no information HDV - HDV < 14 t Information is provided by COPERT model.	Passenger car Passenger car Pa	Petrol Petrol Petrol Petrol Petrol Petrol hybrid Petrol hybrid Diesel Diesel Diesel Diesel Diesel Diesel TX1 Met TX1 Met TX1 MV111 TX4 MV113 TX4 MV113	0 1 2 3 4 5 0 1 2 3 4 5 2 2 2 3 4 5 5 5 5 6 1 2 3 4 5 5 6 7 7 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9	204 392 2848 5593 8843 1998 154 605 15 62 363 2610 5836 4577 807 4179 80 4148 4050 594 4719 26 93 2603 5347 4412 tios (speci 710,000, T te. The unt	$\begin{array}{c} 85.1 \pm 10.7\\ 54.1 \pm 6.5\\ 39.3 \pm 2.4\\ 15.3 \pm 1\\ 10.3 \pm 0.7\\ 48 \pm 0.7\\ 1.6 \pm 1\\ 7 \pm 3.2\\ 47 \pm 8.7\\ 55.7 \pm 7.4\\ 65.5 \pm 4.1\\ 62.9 \pm 1.5\\ 47.7 \pm 0.9\\ 49.9 \pm 1\\ 90.1 \pm 2.8\\ 149.4 \pm 20.3\\ 95.7 \pm 1.3\\ 52.5 \pm 3.1\\ 52.7 \pm 1\\ 49.4 \pm 20.3\\ 95.7 \pm 1.3\\ 52.5 \pm 3.1\\ 52.7 \pm 1\\ 44.1 \pm 1.3\\ 49.2 \pm 0.7\\ 79.7 \pm 7.4\\ 62.9 \pm 3.1\\ 74.8 \pm 14.6\\ 68.6 \pm 7.7\\ 69.8 \pm 1.6\\ 53.5 \pm 1\\ 54.5 \pm 1.2\\ \end{array}$	$\begin{array}{c} 0.5 \pm 0.4 \\ 0.7 \pm 0.3 \\ 0.5 \pm 0.1 \\ 0.3 \pm 0.1 \\ 0.4 \pm 0.4 \\ 12.5 \pm 0.4 \\ 13.5 \pm 0.4 \\ 12.5 \pm 0.4 \\ 13.5 \pm 0.4 \\ 13.3 \pm 0.4 \\ 14.2 \pm 0.4 \\ 14.2 \pm 0.4 \\ 13.3 \pm 0.4 \\ 14.2 \pm 0.4 \\ 14.2 \pm 0.4 \\ 13.3 \pm 0.4 \\ 14.2 \pm 0.4 \\ 1$	0.6 ± 0.4 1.3 ± 0.6 1.4 ± 0.4 2.1 ± 0.5 4.1 ± 0.7 8.4 ± 3 12.9 ± 27.8 15.3 ± 5 13.7 ± 3.3 8.7 ± 0.9 16.3 ± 0.8 28.4 ± 0.9 25.2 ± 0.9 4.3 ± 0.3 8 ± 1.8 5.9 ± 0.2 6.9 ± 1 11.9 ± 0.4 18.6 ± 1.5 12.3 ± 3.5 19.9 ± 3.2 37.6 ± 2.7 12.5 ± 4.5 8.2 ± 2.2 12 ± 0.7 26.6 ± 0.9 24.4 ± 0.9 24.4 ± 0.9 24.4 \pm 0.9 24.4 ± 0.9 24.4 \pm 0.9 24.4 ± 0.9 24.4 \pm 0.9	5 ± 1 9.3 ± 1.2 9.4 ± 0.4 7.8 ± 0.3 5.4 ± 0.2 3.4 ± 0.4 1.9 ± 0.6 4.5 ± 0.5 0.2 ± 0.2 0.4 ± 0.2 0.4 ± 0.2 0.4 ± 0.2 0.4 ± 0.1 0.3 ± 0 0.3 ± 0 0.2 ± 0.1 0.2 ± 0 0.2 ± 0 0.2 ± 0 0.3	e

actors	Missing Info	Main Findings								
	HDV -	Vehicle type	Technology	Euro class	п	NO _x	NO ₂	NO ₂ /NO _x (%)	NH ₃	
	14 t < HDV < 28 t: Information is provided by COPERT model.	Venicle type TfL bus Non-TfL bus Non-TfL bus Non-TfL bus HGV (3.5-12t) HGV (3.5-12t) HGV (3.5-12t) HGV (3.5-12t) HGV (3.5-12t)	DPF DPF EGR EGR SCR SCR SCR SCR SCR SCR	Euro class II II IV V EEV IV V EEV V I I II	1 1 1 1 1 1 1 1 1 1 1 1 1 1	$\begin{array}{c} 81.9 \pm 6 \\ 122.1 \pm 5.1 \\ 160.2 \pm 13.9 \\ 92.5 \pm 10.1 \\ 119.7 \pm 12.6 \\ 104.6 \pm 7.8 \\ 93.3 \pm 6.1 \\ 86.1 \pm 11.9 \\ 84.8 \pm 5.4 \\ 155.4 \pm 29.4 \\ 104.1 \pm 8.7 \\ 119.5 \pm 6.8 \\ 108 \pm 9.1 \\ 90.2 \pm 7.7 \\ 142.1 \pm 18.2 \\ 111.4 \pm 8.4 \\ 119.2 \pm 6.9 \\ 117.5 \pm 9.2 \\ 117.5 \pm 9.2 \\ \end{array}$	$\begin{array}{c} 16.2 \pm 3.6 \\ 17.1 \pm 1.8 \\ 25.5 \pm 6.1 \\ 18.1 \pm 2.8 \\ 16.7 \pm 3.2 \\ 0.2 \pm 0.2 \\ 13.4 \pm 1.9 \\ 28.3 \pm 7.5 \\ 4.3 \pm 0.9 \\ 18.2 \pm 7.5 \\ 4.3 \pm 0.9 \\ 18.2 \pm 7.2 \\ 23.8 \pm 4.9 \\ 24.5 \pm 2.6 \\ 3.7 \pm 1 \\ 13.3 \pm 2.7 \\ 29.9 \pm 9.5 \\ 20.2 \pm 3.7 \\ 9 \pm 1.6 \\ 9.1 \pm 1.4 \\ 10.4 \pm 10.4 \\ \end{array}$	$\begin{array}{c} 100_{2}100_{2}\left(k_{3}\right)\\ 19.7\pm4.6\\ 14\pm1.6\\ 15.9\pm4.1\\ 19.6\pm3.8\\ 13.9\pm3\\ 0.2\pm0.2\\ 14.4\pm2.2\\ 32.9\pm9.8\\ 5.1\pm1.1\\ 11.7\pm5.2\\ 22.9\pm5.1\\ 20.5\pm2.5\\ 3.4\pm1\\ 14.8\pm3.3\\ 21\pm7.2\\ 18.2\pm3.6\\ 7.5\pm1.4\\ 7.7\pm1.3\\ 10.25\pm1.4\\ 7.5\pm1.4\\ 7.5\pm1.4$ 7.5\pm1.4 7.5\pm1.5 7.5\pm1.4 7.5\pm1.5	$\begin{array}{c} \mathbf{M}\mathbf{H}_{3} \\ 0 \pm 0.1 \\ 0 \pm 0.1 \\ 0.1 \pm 0.2 \\ -0.1 \pm 0.2 \\ 1.2 \pm 0.8 \\ 0.6 \pm 0.4 \\ 0.4 \pm 0.4 \\ 0.2 \pm 0.1 \\ 0 \pm 0.4 \\ 0.2 \pm 0.1 \\ 0 \pm 0.4 \\ 0.2 \pm 0.1 \\ 0.4 \pm 0.5 \\ 0.1 \pm 0.1 \\ 0.8 \pm 0.7 \\ 0.3 \pm 0.1 \\ 0.3 \pm 0.1 \\ 1.4 \pm 1.8 \\ 1.4 \pm 1.8 \\ 1.4 \pm 1.8 \\ 1.4 \pm 1.8 \\ 1.4 \pm 0.4 \end{array}$	
	HDV -	HGV (>12t) HGV (>12t) HGV (>12t) HGV (>12t)		II III IV V	17 130 223 191	$\begin{array}{c} 153.4 \pm 21.6 \\ 127.7 \pm 10.4 \\ 126.8 \pm 7.8 \\ 116.1 \pm 8.2 \end{array}$	$18 \pm 12.4 \\ 30.8 \pm 5.4 \\ 3.9 \pm 0.9 \\ 4.4 \pm 0.8$	$11.7 \pm 8.2 \\ 24.1 \pm 4.7 \\ 3.1 \pm 0.7 \\ 3.7 \pm 0.7$	$\begin{array}{c} 0.4 \pm 0.4 \\ 0.2 \pm 0.2 \\ 0.3 \pm 0.3 \\ 0.2 \pm 0.2 \end{array}$	
	Information is provided by COPERT model.	Figur The volu confidence calculated ba	re 17: Table B ume ratios ha interval in the ased on the m	- "Emission ve been mult e mean.nis th ean uncertai	ratios (sp tiplied by ne sample nties calc	pecies/CO2) fo 7 10,000. The u 2 size. The unc 2 vulated for NO	r different he ncertainties a ertainties in t 2and NOx" (1	avy duty vehi re shown as tl he NO2/NOx David C. Cars	cles types. ne 95% ratio were law, 2013,).	
		As the abov factors that emissions (i	e ratios are will be m mg/Km) fo	referring to altiplied w r NOx, and	o volum vith CO 1 NH3.	es we could 2 emissions	calculate n . The resul	nasses in orc ts will defii	ler to have ne specific	
		The followi compute en	ing table w	as based o he databas	on mass se:	calculatior	as and coul	d be used o	directly to	

	Paper resu	lts (mass ratios) - [Factors	
Veh type	tech	NH3	NOx	
Van	euro 1	0.000012	0.005372	
Van	euro 2	0.000008	0.004927	
Van	euro 3	0.000012	0.005013	
Van	euro 4	0.000012	0.003842	
Van	euro 5	0.000012	0.003914	
HGV (3.5e12t)	Euro II	0.000031	0.010205	
HGV (3.5e12t)	Euro III	0.000012	0.008000	
HGV (3.5e12t)	Euro IV	0.000012	0.008561	
HGV (3.5e12t)	Euro V	0.000054	0.008438	
HGV (>12t	Euro II	0.000015	0.011017	
HGV (>12t	Euro III	0.000008	0.009171	
HGV (>12t	Euro IV	0.000012	0.009106	
HGV (>12t	Euro V	0.000008	0.008338	
For the calculation of NOx ra	atio we co	uld assume tha	it it is consisted f	rom 10% NO2
and 90% NO. Furthermore, a	ccording t	to a study of Bo	orsari and de Ass	unção (Borsari
Vanderlei, 2017), we have t acquired results:	he followi	ing table deriv	ed from literatu	re review and

Factors	Missing Info	Main Findings						Comments
		Study	Sample	Measurement r method	Analysis method	NH ₃ (mg.km ⁻¹) ⁽³⁾		
		Fraser and Cas 1998	s, Fleet	Tunnel	Colorimetric	61		
		Kean et al, 2000) Fleet	Tunnel	Ion chromatography	49		
		Durbin et a 2002	l, 39	Dynamometer (FTP-75 cycle)	FTIR	33.5		
		Karlsson, 2004	5	Dynamometer (NEDC)	Mass spectrometer	17.3		
		Huai et al, 2005	n.d.	Modeling	Several	9.4 (SULEV) ⁽²⁾ 13.5 (ULEV)		
						21.7 (LEV)		
		Reyes et a	l, 1 (hybri	d) Dynamometer	FTIR	1.5 (FTP-75)		
		2006		(2 cycles)		9.2 (5)		
		Burgard et a 2006	l, Fleet	Traffic	Remote sensing	37 (1)		
		Kean et al, 2009) Fleet	Tunnel	Ion chromatography	30 (4)		
		Livingston et a 2009	l, 41	Dynamometer (several cycles)	FTIR	46		
		Bishop et a 2010	l, Fleet	Traffic	Remote sensing	37 (1)		
		Bielaczik et a 2012	l, 3	Dynamometer (NEDC)	IR	16.9 (gasoline) 6.2 e 6.2 (gasoline, LPG)		
						3.7 e 1.6 (gasoline, GNV)		
		Daemme et a 2014	l, 3	Dynamometer (FTP-75 cycle)	FTIR	5.2 (gasohol) 3.7 (diesel)		
		This study	1	Dynamometer (several cycles)	FTIR	9.0 (gasohol, HEF, CNG)		
		(1) The origin km.L ¹ and (2) California vehicles; (3) Unless in undefinee (4) The origin km.L ¹ and (5) Five speci	al result of 0 I a gasoline d State Contro JLEV – ultra-I licated other I. al result of 0. i a gasoline d fic cycles wer	49 g.kg ⁻⁴ was transforr ensity of 0.75 kg.L ¹ . Legislation besignatic ow emission vehicles; wise, the fuel is gasolin 40 g.kg ⁻⁴ was transforr ensity of 0.75 kg.L ¹ . e used to simulate urb	ned into g.km ⁻¹ assum ns - USA: SULEV – sup LEV – low emission ve e, or, in the case of tr ned into g.km ⁻¹ assum an traffic in five region	ing autonomy of 10 ber ultra-low emission hicles. affic studies, ing autonomy of 10 ns of Mexico City.	several studies " (Borcari	
		rigure 10: Average emission	15 01 N	Vanderlei,	2017).	incles from	several studies. (DOTSATI	

Factors	Missing Info	Main Findings	Comments
		Conclusion: Although literature presents ratios and actual values of NH3 emissions, the results are not stable and reliable as the actual emissions are very low (around some mg/mi) and the ratios are also low and present very high standard deviations (in most of the cases equal or higher than average). Based on the above and since COPERT provides with values for HDVs and L- Categories, LCVs values could be calculated based on the HDV relevant values (use values from the smallest HDVs – most similar with LCVs and according to euro categories and emission reduction technologies).	
Occupancy	L-category no information	L-category: No information was found.	L L-category: No values were produced for this category.
	LCVs no information HDV -	LCVs: No information was found. HDV (All types): No information was found.	LCVs: Based on the assumptions made. The NH3 followed the same pattern with NOx (NOx increase rates as presented in the relevant
	HDV < 14 t		NOx table) and according to

Factors	Missing Info	Main Findings	Comments
	no information HDV -	Conclusions: L-Category: Since, L-Category vehicles include motorcycles, ATVs and mini cars that usually do not have important storage capacity we can assume that they are not affected by load or additional load is not applied for those cases.	euro category and emission reduction technology. HDV - HDV < 14 t:
	14 t < HDV	There is no information provided by literature or COPERT on effect of occupancy in NH3 emissions. Since the NH3 is related with NOx and the emission reduction technology we can assume that they follow the same pattern. More specifically, for the estimation of the increase of NH3 as a result of the occupancy effect NOx relevant increase rates should be used for both HDVs and LCVs. The relative increase should take into consideration euro categories and emission reduction technologies.	The same methodology described for LCV was followed. HDV - 14 t < HDV < 28 t: The same methodology described for LCV was followed. HDV - 28 t < HDV: The same methodology
			described for LCV was followed.

Factors	Missing Info	Main Findings	Comments
Road Conditions	L-category no information	L-category: No information was found. LCVs:	L-category: Based on the assumptions made. The NH3 followed the same pattern with NOx (NOx increase rates as
	LCVs no information	No information was found. HDV (All types):	presented in the relevant NOx table) and according to euro category and emission reduction technology.
	HDV - HDV < 14 t	No information was found.	LCVs: The same methodology
	no information HDV - 14 t < HDV < 28 t:	Conclusions: There is no information provided by literature or COPERT on effect of road conditions in NH3 emissions. Since the NH3 is related with NOx and the emission reduction	described for L-Category was followed.
		estimation of the increase of NH3 as a result of the road conditions effect, NOx relevant increase rates should be used for both HDVs and LCVs. The relative increase should take into consideration euro categories and emission reduction technologies.	HDV - HDV < 14 t: The same methodology described for L-Category
	no information		was followed. HDV -

Factors	Missing Info	Main Findings	Comments
	HDV -		14 t < HDV < 28 t:
	28 t < HDV: no information		The same methodology described for L-Category was followed.
			HDV -
			28 t < HDV:
			The same methodology described for L-Category was followed.
Road	L-category	L-category:	L-category:
gradient	no information LCVs no information	No information was found. LCVs: No information was found.	Based on the assumptions made. The NH3 followed the same pattern with NOx (NOx increase rates as presented in the relevant NOx table) and according to euro category and emission reduction technology.
		HDV (All types):	0,

Factors	Missing Info	Main Findings	Comments
	Info HDV - HDV < 14 t no information HDV - 14 t < HDV < 28 t: no information HDV - 28 t < HDV: no information	No information was found. Conclusions: There is no information provided by literature or COPERT on effect of gradient in NH3 emissions. Since the NH3 is related with NOx and the emission reduction technology we can assume that they follow the same pattern. More specifically, for the estimation of the increase of NH3 as a result of the road gradient effect, NOx relevant increase rates should be used for both HDVs and LCVs. The relative increase should take into consideration euro categories and emission reduction technologies.	LCVs:The same methodology described for L-Category was followed.HDV - HDV < 14 t:
			28 t < HDV:

Factors		Missing Info	Main Findings	Comments
				The same methodology described for L-Category was followed.
Туре	of	L-category:	L-category:	L-category:
Fuel		Information for Diesel and Petrol	No specific information was found.	No additional fuel types were illustrated in this category.
		LCVs: Information for Diesel and Petrol HDV - HDV -	 Based on the same study (Borsari Vanderlei, 2017) (see the above Table 22) the NH3 emissions (expressed as mg/Km) are 16.9 (gasoline), 6.2 (gasoline, LPG) and 9.0 (gasohol, HEF, CNG) for LCVs. HDV (All types): No specific information was found. 	LCVs: Emission factors for LPG and CNG fuel types were produced for LCVs. The values of NH3 were based on relevant Passenger car vehicles as provided by COPERT model.
		Information for Diesel and Petrol	Electric Vehicles: Emissions from Electricity Since all exclusive electric vehicles are charged using the grid, then the emissions (including CH4) produced from vehicles with this fuel type are defined by the	For electricity powered LCVs the average value of 0.310 KWh/km was used for all LCVs sub-types of the

Factors	Missing Info	Main Findings	Comments
	HDV - 14 t < HDV < 28 t: Information	emissions types and volumes produced in each country for the grids electricity production. In this framework, the EU average NH3 is 1.72 mg per KWh (ECOINVENT).	database. The NH3 emissions were calculated by using the average emission factor of 1.72 mg Kg/KWh.
	for Diesel and Petrol	Conclusion:	HDV - HDV < 14 t:
	HDV -	L-Category: Since, L-Category vehicles include motorcycles, ATVs and mini cars that usually do not have alternative fuel types we can assume that the provision of values for relevant fuel types is not necessary.	Emission factors for LPG and CNG fuel types were produced for HDVs (<14 t).
	Information for Diesel and Petrol	Since COPERT model provides with CNG and LPG NH3 values for passenger cars and buses, then we can use the relevant passenger cars (the most similar with LCVs – i.e. Large-SUV) to calculate the emissions for LCVs and the relevant Buses to calculate the emissions for HDVs.	based on relevant buses vehicles as provided by COPERT model.
			HDV -
		Moreover, for electricity powered vehicles we can use the average NH3 emitted per KWh in Europe and multiply it with consumption expressed as KWh/km. The average consumption was assumed as 0.31 KWh/Km.	14 t < HDV < 28 t: No additional fuel types were illustrated in this category.
			HDV -

Factors	Missing Info	Main Findings	Comments
			28 t < HDV:
			No additional fuel types were illustrated in this category.
Wind	L-category	L-category:	L-category:
	no information	No information was found.	Based on the assumptions made. The NH3 followed the same pattern with NOx
		LCVs:	(NOx increase rates as
	LCVs no information	No information was found.	presented in the relevant NOx table) and according to euro category and emission reduction technology.
		HDV (An types).	
	HDV - HDV < 14 t	No information was found.	LCVs:
	no information	Conclusions:	The same methodology with L-Category was followed.
		Since the NH3 is related with NOx and the emission reduction technology, we can assume that they follow the same pattern. More specifically, for the estimation of the	
	HDV -	increase of NH3 as a result of the occupancy effect NOx relevant increase rates (presented in the relevant NOx table – Wind emission factor) should be used for both	HDV - HDV < 14 t:

Factors	Missing Info	Main Findings	Comments
	14 t < HDV < 28 t:	HDVs and LCVs. The relative increase should take into consideration euro categories and emission reduction technologies.	The same methodology with L-Category was followed.
	no information		HDV -
	HDV - 28 t < HDV:		14 t < HDV < 28 t: The same methodology with L-Category was followed.
	no information		HDV -
			28 t < HDV: The same methodology with L-Category was followed.
A/C	L-category no information	L-category: No information was found.	L-category: No values were produced for this category.
	LCVs	LCVs: No information was found.	LCVs:

Factors	Missing Info	Main Findings	Comments
	no information HDV - HDV < 14 t	HDV (All types): No information was found.	The A/C effect was calculated by using the percentage increase in NOx (as presented in NOx table) and multiplied with actual NH3 values for all LCVs types (including euro
	no information	L-Category: Since, L-Category vehicles include motorcycles, ATVs and mini cars that usually do not have A/C systems we can assume that this factor is not applied for this vehicle types.	categories etc.).
	HDV - 14 t < HDV < 28 t:	Since the NH3 is related with NOx and the emission reduction technology, we can assume that they follow the same pattern. More specifically, for the estimation of the increase of NH2 as a result of the AC affect NOx relevant increase rates should be used	The same methodology with LCV was followed.
	information	for both HDVs and LCVs. The relative increase should take into consideration euro categories and emission reduction technologies.	HDV - 14 t < HDV < 28 t:
	HDV - 28 t < HDV:		The same methodology with LCV was followed.
	no information		HDV - 28 t < HDV:

Factors	Missing Info	Main Findings	Comments
			The same methodology with LCV was followed.
Traffic	L-category	L-category:	L-category:
	no information	No information was found.	The traffic effect was calculated by using the percentage increase in NOx
	LCVs no information	LCVs: No specific information was found. HDV (All types):	(as presented in NOx table) and multiplied with actual NH3 values for all L- Category types (including euro categories etc.).
	HDV - HDV < 14 t no information	No specific information was found. Conclusion: Since the NH3 is related with NOx and the emission reduction technology, we can assume that they follow the same pattern. More specifically, for the estimation of the	LCVs: The same methodology described for L-Category was followed.
	HDV - 14 t < HDV < 28 t:	increase of NH3 as a result of the traffic effect, NOx relevant increase rates should be used for both HDVs and LCVs. The relative increase should take into consideration euro categories and emission reduction technologies.	HDV - HDV < 14 t:

Factors	Missing	Main Findings	Comments
	Info		
	no		The same methodology
	information		described for L-Category
			was followed.
	UDV		
	IIDV -		HDV -
	28 t < HDV:		
	no		14 t < HDV < 28 t:
	information		The same methodology
			described for L-Category
			was followed.
			HDV -
			28 t < HDV:
			The same methodology
			described for L-Category
			was followed.

4.3.2.7 NOx

Table 23: Emission Factors for NOx - Gap analysis results, findings and applied solutions (in GYR database)

Factors N In	Missing Info	Main Findings	Comments
Occupancy L	L-category	L-category:	L-category:
n ir	no information	No information was found.	No values were produced for this category.
L n ir H H C p d (3	LCVs no information HDV - HDV < 14 t: COPERT provides data (3 classes) HDV -	LCVs: No specific information was found for LCVs. General results: There are no articles for occupancy effect on LCVs and L-categories CO emissions. Yu et al (Qian Yu, 2016) measured NOx emissions on urban busses in four passenger load categories and found the results as presented in the following graph. The results show that the emission volumes are strongly related with speed.	LCVs: The occupancy effect was calculated by using the percentage increase described in the vehicles included in the type: HDV>3.5 t of COPERT (closest category to LCVs). This increase in NOx emissions was applied to all LCVs based on the respective euro categories.

Factors	Missing Info	Main Findings	Comments
	14 t < HDV < 28 t:COPERT provides data(3 classes)HDV - 	Figure 19: "Emission rates for NOx and rates for different speeds and passenger load" (Qian Yu, 2016)	
	COPERT provides data (3 classes)	Furthermore, occupancy effect in NOx emissions of HDVs is presented in COPERT model.	
		 Conclusion: L-Category: Since, L-Category vehicles include motorcycles, ATVs and mini cars that usually do not have important storage capacity we can assume that they are not affected by load or additional load is not applied for those cases. LCVs: The information provided from the above article presents only actual fuel consumptions and focuses only on buses, thus it is considered not representative for LCVs. 	

Factors	Missing Info	Main Findings	Comments
		In this context, the use of the same values based on HDV occupancy effect (expressed as rates) as described in COPERT is considered the most reliable solution for the estimation of LCVs occupancy effect on NOx emissions.	
Road	L-category	L-category:	L-category:
Conditions	no information	No specific information was found.	Extrapolation was performed by using the results presented in the table (see on the left cell)
		LCVs:	and based on 15 values.
	LCVs no information	No specific information was found. HDV (All types):	0% NOx increase corresponds to the basic emissions of our database and refers to excellent road conditions.
	HDV -	No specific information was found.	
	HDV < 14 t		LCVs:
	no information	General Results: In the article of Setyawan et al (Setyawan, 2015) the effect of road condition was examined using "PCI (Pavement Condition Index)" method and found that road	The same methodology (described for L-Category) was followed.
	HDV -	conditions affect the speed of the vehicle and consequently the total amount of NO	
	14 t < HDV < 28 t:	are illustrated in the following table:	HDV - HDV < 14 t:

Factors	Missing Info	Main Findings	Comments
	no information	Table 24: emissions values for NO (representing different road conditions) derived from (Setyawan, 2015) expressed as rates (%) compared with values in excellent road conditions.	The same methodology (described for L-Category) was followed.
	HDV -	PCI NO Increase (%)	
	28 t < HDV:		HDV -
	no	19 4.57	14 t < HDV < 28 t:
	information	34 3.27	The same methodology
		43 3.00	(described for L-Category) was
		59 2.45	followed.
		79 0.08	
		100 0.02	HDV -
			28 t < HDV:
		Conclusion: Based on the above results and since we can assume that NO is the 90% of NOx (Patrik Soltic, 2003) then we assume that the increase of NO illustrated in the table is almost the same for NOx. For the calculation and production of NOx values for this factor, we can perform an interpolation based on the above table and the defined classes (15 years) in our database. PCI transformation to year classes is performed based on qualitative characteristics described above and from the fact that road age expresses directly the road quality.	The same methodology (described for L-Category) was followed.

Factors	Missing Info	Main Findings	Comments
		 Based on the above we can perform the following assumption in order to make the interpolation: Initial emission value is related with the age of 0 year (completely new road); PCI 100 equals to the basic emissions (Road age is 1 year); PCI 19 equals to the fifteenth class (15th year). 	
Road gradient	L-category: no information LCVs no information HDV - HDV - HDV < 14 t: COPERT provides data	 L-category: No specific information was found. LCVs: In the study of Zhang et al (Wendan Zhang, 2015) a literature review for the effect of road gradient in vehicular emissions was performed as presented in the table for FC/CO2 and the table for CO emission. This study also included effect in NOx emissions. As already described the result of this study results are not consisted, thus they are not suitable for usage in the database. Conclusion: As previously described, gradient affects directly the power needs of an engine and 	L-category: The same methodology with LCVs was followed. LCVs: The Road gradient effect was calculated by using the percentage increase of NOx illustrated in the vehicles included in the type: HDV>3.5 t of COPERT. This increase was applied to all LCVs based on the respective euro categories.
	(13 classes - From -0.06	also affects directly the FC. Furthermore, NOx increases with the increase of power	

Factors	Missing Info	Main Findings	Comments
	to 0.06 (per 0.02).	need and acceleration of a vehicle (ICCT (The International Council on Clean Transportation)).	
	HDV - 14 t < HDV < 28 t:	Moreover, COPERT provides with road gradient effect for HDVs. In this context, values based on HDV occupancy effect (expressed as rates) as described in COPERT is considered a more reliable solution for LCVs occupancy estimation on NOx emissions.	
	COPERT provides data (13 classes - From -0.06 to 0.06 (per 0.02).		
	HDV -		
	28 t < HDV:		
	COPERT provides data (13 classes - From -0.06		

Factors	Missing Info	Main Findings	Comments
	to 0.06 (per 0.02).		
Type o	f L-category	L-category:	L-category:
Fuel	Information for Diesel and Petrol.	No information was found.	No additional fuel types were illustrated in this category.
		LCVs:	
	LCVs	No information was found.	LCVs: Emission factors for LPG and
	Information for Diesel	HDV (All types):	CNG fuel types were produced for LCVs. The values of NOx
		No information was found.	Passenger car vehicles as provided by COPERT model.
	HDV - HDV < 14 t:	Electric Vehicles:	
	Information for Diesel	Emissions from Electricity Since all exclusive electric vehicles are charged using the grid, then the emissions	For electricity powered LCVs the average value of 0.310
	and Petrol.	(including CH4) produced from vehicles with this fuel type are defined by the emissions types and volumes produced in each country for the grids electricity	LCVs sub-types of the database. The CH4 emissions were
	HDV -	production.	

Factors	Missing Info	Main Findings	Comments
	14 t < HDV < 28 t:	In this framework the EU average NOx is 1.64 grams per KWh (ECOINVENT).	calculated by using the average emission factor of 1.64 g/KWh .
	Information for Diesel and Petrol. HDV - 28 t < HDV: Information for Diesel and Petrol.	 Conclusions: L-Category: Since, L-Category vehicles include motorcycles, ATVs and mini cars that usually do not have alternative fuel types we can assume that the provision of values for relevant fuel types is not necessary. Since COPERT model provides with CNG and LPG NOx values for passenger cars and buses, then we can use the relevant passenger cars (the most similar with LCVs - i.e. Large-SUV) to calculate the emissions for LCVs and the relevant Buses to calculate the emissions for HDVs. 	HDV - HDV < 14 t: Emission factors for LPG and CNG fuel types were produced for HDVs (<14 t). The values of NOx were based on relevant buses vehicles as provided by COPERT model.
		Moreover, for electricity powered vehicles we can use the average NOx emitted per KWh in Europe and multiply it with consumption expressed as KWh/km. The average consumption was assumed as 0.31 KWh/Km.	HDV - 14 t < HDV < 28 t: No additional fuel types were illustrated in this category. HDV - 28 t < HDV: No additional fuel types were illustrated in this category.

Factors	Missing Info	Main Findings	Comments
Wind	 L-category no information LCVs no information HDV - HDV < 14 t no information 	L-category: No information was found. LCVs: No information was found. HDV (All types): No information was found. General Results:	L-category: The wind effect was calculated by using the percentage increase in FC (calculated as presented in the FC/CO2 table) and multiplied with actual NOx values for all L-category types (including euro categories etc.). LCVs: The same methodology with L- Category was followed.
	HDV - 14 t < HDV < 28 t: no information	Conclusions: Wind affects directly the fuel consumption and the power needs of an engine. Furthermore, NOx increases with the increase of power need and acceleration of a vehicle (ICCT (The International Council on Clean Transportation)). Then we can assume that NOx follows the same pattern with FC. Since FC results are available for all 9 classes (wind from 40-80km/h to -4080km/h) and as a percentage of FC increase, the same percentage could be used assuming that the more the fuel	HDV - HDV < 14 t: The same methodology with L- Category was followed. HDV - 14 t < HDV < 28 t:

Factors	Missing Info	Main Findings	Comments
	HDV - 28 t < HDV: no information	consumed the more the NOx produced (linear correlation) and the opposite. This solution supports also the consistency of the database.	The same methodology with L- Category was followed. HDV - 28 t < HDV:
			The same methodology with L- Category was followed.
A/C	L-category	L-category:	L-category:
	no information	No information was found.	No values were produced for this category.
		LCVs:	
	LCVs	No information was found.	LCVs:
	no information		The A/C effect was calculated by using the percentage
		HDV (All types):	FC/CO2 table) and multiplied
	HDV -	No information was found.	with actual NOx values for all
	HDV < 14 t		LCVs types (including euro
		Conclusions:	calegories elc.j.

Factors	Missing Info	Main Findings	Comments
	no information	L-Category: Since, L-Category vehicles include motorcycles, ATVs and mini cars that usually do not have A/C systems we can assume that this factor is not applied for this vehicle types.	HDV - HDV < 14 t:
	HDV -		LCV was followed.
	14 t < HDV < 28 t:	A/C affects directly the fuel consumption and the power needed. Furthermore, NOx increases with the increase of power need and acceleration of a vehicle (ICCT (The International Council on Clean Transportation)). Then we can assume that	HDV -
	no information	NOx follows the same pattern with FC. Since FC results are available for all 135 AC classes and are expressed as a percentage of FC increase, the same percentage could be used assuming that the more the fuel consumed the more the NOx produced	14 t < HDV < 28 t: The same methodology with
		(linear correlation) and the opposite. This solution supports also the consistency of	LCV was followed.
	HDV -	the database.	
	28 t < HDV:		HDV -
	no		28 t < HDV:
	information		The same methodology with LCV was followed.
Traffic	L-category	L-category:	L-category:
	no information	No information was found.	The same methodology described for LCVs was followed.

Factors	Missing Info	Main Findings	Comments
		LCVs:	
	LCVs	Results are presented along with HDVs.	
	no		LCVs:
	information	HDV (All types):	The traffic effect was calculated
	HDV - HDV < 14 t no information HDV - 14 t < HDV < 28 t:	 In Zhang et al (2011) (Zhang Kai, 2011) study we have NOx and other emissions results related with congestion as presented in the Figure 10: "Summary of speed/acceleration profiles, emission factors and fuel consumption rates for LDV and HDV grouped by traffic condition.". As it is discussed in the table FC/CO2 the results of the study are not suitable for the database. Moreover based on COST 346 project (Martin Rexeis, 2005), the NOx and PM are affected from average speed as follows: 	by using the percentage increase in FC (calculated as presented in the FC/CO2 table) and multiplied with actual NOx values for all LCVs types (including euro categories etc.). An exception was made for the case of vehicles with SCR technology. In this case no effect of road conditions was taken into consideration (0% increase).
	information		
			HDV - HDV < 14 t:
	HDV - 28 t < HDV:		The same methodology described for LCVs was followed.

Factors	Missing Info	Main Findings	Comments
		Conclusion: Based on the above, and since NOx could be considered that follows the same pattern with FC (see previous results) then we could multiply increase rates for different traffic conditions (as mentioned in the FC/CO2 table) with the actual and initial values of NOx. An exemption will be made in the cases of LCVs and HDVs using SCR technologies. In this case will present 0% increase.	

4.3.2.8 PM exhaust

 Table 25: Emission Factors for PM exhaust - Gap analysis results, findings and applied solutions (in GYR database)

Factors	Missing Info	Main Findings	Comments
Occupancy	L-category	L-category:	L-category:
	no information	No information was found.	No values were produced for this category.
	LCVs	LCVs:	
	no information	No information was found.	LCVs:
			The occupancy effect was calculated by using the percentage increase
	HDV - HDV < 14 t	HDV (All types):	described in the vehicles included in
	no information	No information was found.	(closest category to LCVs). This increase in PM emissions was
	HDV -	Conclusion:	applied to all LCVs based on the respective euro categories.
	14 t < HDV < 28 t:	L-Category: Since, L-Category vehicles include motorcycles, ATVs and	
	no information	mini cars that usually do not have important storage capacity we can assume that they are not affected by load or additional load is not applied for those cases.	
	HDV -		
	28 t < HDV: no information	LCVs: The information provided from the above article presents only actual fuel consumptions and focuses only on buses, thus it is considered not representative for LCVs.	

Factors	Missing Info	Main Findings	Comments
		In this context and as there is not available relevant literature; values based on HDV occupancy effect (expressed as rates) in PM emissions (as described in COPERT model) could be used to estimate LCVs occupancy effect on PM emissions.	
Road	L-category	L-category:	L-category:
Conditions	no information	No specific information was found.	Extrapolation was performed by using the results presented in the table (see on the left cell) and based on 15 values
		LUVS:	0% DM increases corresponde to the
	no mormation	No specific information was found for LCVS.	basic emissions of our database and refers to excellent road conditions.
	HDV - HDV < 14 t	HDV (All types):	
	no information	No specific information was found for LCVs.	LCVs:
	HDV -	General Results:	The same methodology (described for L-Category) was followed.
	14 t < HDV < 28 t:	In the article Setyawan et al (Setyawan, 2015)Error! Bookmark not	
	no information	defined. the effect of road condition was examined using "PCI (Pavement Condition Index)" method and found that road conditions	HDV - HDV < 14 t:
		affect the speed of the vehicle and the total amount of PM and other	The same methodology (described for L-Category) was followed
	HDV -	for PM are illustrated in the following table:	for L-Category) was followed.
	28 t < HDV:		

Factors	Missing Info	Main Findings	Comments
	no information	Table 26: PM emissions values (representing different road conditions) derived from (Setyawan, 2015) expressed as rates (%) compared with values in excellent road conditions. PCI PM Increase (%)	HDV - 14 t < HDV < 28 t: The same methodology (described for L-Category) was followed.
		192.48341.23430.95590.52790.131000.02 Conclusion: For the calculation and production of PM values for this factor we can perform an interpolation based on the above table and the defined classes (15 years) in our database. PCI transformation to year classes is performed based on qualitative characteristics described above and from the fact that road age expresses directly the road quality. Based on the above we can perform the following assumption in order to make the interpolation:	HDV - 28 t < HDV: The same methodology (described for L-Category) was followed.
		• Initial emission value is related with the age of 0 year (completely new road)	

Factors	Missing Info	Main Findings	Comments
		 PCI 100 equals to the basic emissions (Road age is 1 year) PCI 19 equals to the fifteenth class (1^{5th} year) 	
Road	L-category:	L-category:	L-category:
gradient	no information	No information was found.	The same methodology with LCVs was followed.
	LCVs	LCVs:	
	no information	No information was found.	LCVs:
			The Road gradient effect was
	HDV - HDV < 14 t:	Conclusion:	increase of PM illustrated in the
	COPERT provides data (13 classes - From -0.06 to 0.06 (per 0.02).	There is not available information on literature. COPERT provides with road gradient effect for HDVs. In this context, values based on HDV occupancy effect (expressed as rates) as described in COPERT could be applied for LCVs occupancy estimation on PM emissions.	vehicles included in the type: HDV>3.5 t of COPERT. This increase was applied to all LCVs based on the respective euro categories.
	HDV -		
	14 t < HDV < 28 t:		
	COPERT provides data (13 classes -		

Factors	Missing Info	Main Findings	Comments
	From -0.06 to 0.06 (per 0.02).		
	HDV -		
	28 t < HDV:		
	COPERT provides data (13 classes - From -0.06 to 0.06 (per 0.02).		
Type of	L-category	L-category:	L-category:
Fuel	Information for Diesel and Petrol.	No information was found.	No additional fuel types were illustrated in this category.
	LCVs	LCVs: No information was found	LCVs:
	Information for Diesel and Petrol.	HDVs:	Emission factors for LPG and CNG fuel types were produced for LCVs. The values of PM were based on
	HDV - HDV < 14 t: Information for Diesel and Petrol	PM exhaust emissions for HDV vehicles with engines that use natural gas (NG) are presented in the article of Stettler et al (Marc Stettler, 2019) Error! Bookmark not defined. . The article presents the following PM exhaust emissions as illustrated in Figure 14: "Summary of other	relevant Passenger car vehicles as provided by COPERT model.

Factors	Missing Info	Main Findings	Comments
	HDV - 14 t < HDV < 28 t: Information for Diesel and Petrol.	air pollutant emissions produced by different types of diesel and natural gas heavy goods vehicles.". Since standard deviation of PM is almost as high as the average the results of illustrated on the table could not be considered representative. This idea is supported also by the fact that the article refers to specific type of HDVs that have specific type of engines.	For electricity powered LCVs the average value of 0.310 KWh/km was used for all LCVs sub-types of the database. The PM emissions were calculated by using the average emission factor of 946.72 mg/KWh .
	HDV - 28 t < HDV: Information for Diesel and Petrol.	Electric Vehicles: <u>Emissions from Electricity</u> Since all exclusive electric vehicles are charged using the grid, then the emissions (including CH4) produced from vehicles with this fuel type are defined by the emissions types and volumes produced in each country for the grids electricity production.	HDV - HDV < 14 t: Emission factors for LPG and CNG fuel types were produced for HDVs (<14 t). The values of PM were based on relevant buses vehicles as provided by COPERT model.
		 In this framework the EU average PM is the following (ECOINVENT): Particulates, < 2.5 um: 238.52 mg/KWh Particulates, > 10 um: 672.81 mg/KWh Particulates, > 2.5 um, and < 10um: 35.38 mg/KWh The total PM produced (all categories) is <u>946.72 mg per KWh</u> . Conclusion:	HDV - 14 t < HDV < 28 t: No additional fuel types were illustrated in this category. HDV - 28 t < HDV:

Factors	Missing Info	Main Findings	Comments
		L-Category: Since, L-Category vehicles include motorcycles, ATVs and mini cars that usually do not have alternative fuel types we can assume that the provision of values for relevant fuel types is not necessary.	No additional fuel types were illustrated in this category.
		Since COPERT model provides with CNG and LPG PM values for passenger cars and buses, then we can use the relevant passenger cars (the most similar with LCVs – i.e. Large-SUV) to calculate the emissions for LCVs and the relevant Buses to calculate the emissions for HDVs. Moreover, for electricity powered vehicles we can use the average PM emitted per KWh in Europe and multiply it with consumption expressed as KWh/km. The average consumption was assumed as 0.31 KWh/Km .	
Wind	L-category	L-category:	L-category:
	no information	No information was found.	The wind effect was calculated by using the percentage increase in FC (calculated as presented in the
	LCVs	LCVs:	FC/CO2 table) and multiplied with
	no information	No information was found.	actual PM values for all L-category types (including euro categories etc.).
	HDV - HDV < 14 t	HDV (All types):	

Factors	Missing Info	Main Findings	Comments
	no information	No information was found.	LCVs: The same methodology with L-
	HDV -	Conclusions:	Category was followed.
	14 t < HDV < 28 t: no information HDV - 28 t < HDV: no information	Since wind affects directly the fuel consumption and since PM is a product of non complete combustion (Mohsin Raza, 2018), then we can assume that PM follows the same pattern with FC. Since FC results are available for all 9 classes (wind from 40-80km/h to -4080km/h) and as a percentage of FC increase, the same percentage could be applied assuming that the more the fuel consumed the more the PM produced (linear correlation) and the opposite. This solution supports also the consistency of the database.	HDV - HDV < 14 t: The same methodology with L- Category was followed. HDV - 14 t < HDV < 28 t: The same methodology with L- Category was followed.
			HDV - 28 t < HDV: The same methodology with L- Category was followed.
A/C	L-category	L-category:	L-category:

Factors	Missing Info	Main Findings	Comments
	no information	No information was found.	No values were produced for this category.
	LCVs no information	LCVs: No information was found.	LCVs: The A/C effect was calculated by using the percentage increase in FC
	HDV - HDV < 14 t no information	HDV (All types): No information was found.	(as presented in FC/CO2 table) and multiplied with actual PM values for all LCVs types (including euro categories etc.).
	HDV -	Conclusions:	
	14 t < HDV < 28 t: no information	L-Category: Since, L-Category vehicles include motorcycles, ATVs and mini cars that usually do not have A/C systems we can assume that this factor is not applied for this vehicle types.	HDV - HDV < 14 t: The same methodology with LCV was followed.
	HDV - 28 t < HDV: no information	Since A/C affects directly the fuel consumption and since the PM is a product of non complete combustion (Mohsin Raza, 2018), then we can assume that PM follows the same pattern with FC. Since FC results are available for all 135 AC classes and are expressed as a percentage of FC increase, the same percentage could be used assuming that the more the fuel consumed the more the PM produced (linear correlation) and the opposite. This solution supports also the consistency of the database.	HDV - 14 t < HDV < 28 t: The same methodology with LCV was followed.

Factors	Missing Info	Main Findings	Comments
			HDV -
			28 t < HDV:
			The same methodology with LCV was followed.
Traffic	L-category	L-category:	L-category:
	no information	No information was found.	The traffic effect was calculated by using the percentage increase in FC (calculated as presented in the
	LCVs	LCVs:	FC/CO2 table) and multiplied with
	no information	No specific information was found.	actual NOx values for all L-category types (including euro categories etc.).
	HDV - HDV < 14 t	HDV (All types):	
	no information	No specific information was found.	LCVs:
	HDV -	Conclusion:	The same methodology described for L-Category was followed.
	14 t < HDV < 28 t:	As it described in the table for NOx, since PM could be considered that	
	no information	follows the same pattern with FC (see previous results), then we could	HDV - HDV < 14 t:
		multiply increase rates for different traffic conditions with the actual- initial values of PM.	The same methodology described for L-Category was followed.
	HDV -		

Factors	Missing Info	Main Findings	Comments
	28 t < HDV:		HDV -
	no information		14 t < HDV < 28 t:
			The same methodology described for L-Category was followed.
			HDV -
			28 t < HDV:
			The same methodology described for L-Category was followed.

4.3.2.9 VOC

Table 27: Emission Factors for VOC - Gap analysis results, findings and applied solutions (in GYR database)

Factors	Missing Info	Main Findings	Comments
Occupancy	L-category	L-category:	L-category:
	no information	No information was found.	No values were produced for this category.
	LCVs no information	LCVs: No specific information was found.	LCVs: The occupancy effect was calculated
	HDV - HDV < 14 t:	General:	by using the percentage increase described in the vehicles included in the type: HDV>3.5 t of COPERT
	COPERT provides data (3 classes).	There are no articles for occupancy effect on all types of vehicles for VOC emissions. Nevertheless Yu et al (Qian Yu, 2016) measured HC emissions on urban busses in four passenger load categories and found the results as presented in the following graph. The results show that	(closest category to LCVs). This increase in VOC emissions was applied to all LCVs based on the
	HDV -	the emission volumes are strongly related with speed.	respective euro categories.
	14 t < HDV < 28 t:		
	COPERT provides data (3 classes).		
	HDV -		

Factors	Missing Info	Main Findings	Comments
	28 t < HDV: COPERT provides data (3 classes).	Image: second systemImage: second sy	
		 Conclusion: L-Category: Since, L-Category vehicles include motorcycles, ATVs and mini cars that usually do not have important storage capacity we can assume that they are not affected by load or additional load is not applied for those cases. LCVs: The information provided from the above article presents only actual fuel consumptions and focuses only on buses, thus it is considered not representative for LCVs. 	

Factors	Missing Info	Main Findings	Comments
		In this context and as there is not available relevant literature, values based on HDV occupancy effect (expressed as rates) in VOC emissions (as described in COPERT model) could be used to estimate LCVs occupancy effect on VOC emissions.	
Road	L-category	L-category:	L-category:
Conditions	no information	No information was found.	The road conditions effect was calculated by using the percentage increase in FC (calculated as
	LCVs no information	LCVs: No information was found.	presented in the FC/CO2 table) and multiplied with actual VOC values for all L-category types (including euro categories etc.).
	HDV - HDV < 14 t:	HDV (All types):	
	no information	No information was found.	LCVs:
	HDV -	Conclusions:	The same methodology with L- Category was followed.
	14 t < HDV < 28 t:	Since Road conditions affects directly the fuel consumption and since	
	no information	the VOC is a product of non complete combustion (Mohsin Raza, 2018), then we can assume that VOC follows the same pattern with FC. Since FC results are available for all 15 classes and as a percentage of FC	HDV - HDV < 14 t: The same methodology with L-
	HDV -	increase, the same percentage could be used assuming that the more the fuel consumed the more the VOC produced (linear correlation).	Category was followed.
	28 t < HDV:	This solution supports also the consistency of the database.	

Factors	Missing Info	Main Findings	Comments
	no information		HDV -
			14 t < HDV < 28 t:
			The same methodology with L-Category was followed.
			HDV -
			28 t < HDV:
			The same methodology with L- Category was followed.
Road	L-category:	L-category:	L-category:
gradient	no information	No information was found.	The same methodology with LCVs was followed.
	LCVs	LCVs:	
	no information	No information was found.	LCVs:
			The Road gradient effect was calculated by using the percentage
	HDV - HDV < 14 t:	General Results:	increase of VOC illustrated in the
	COPERT provides data (13 classes -	Zhang et al (Wendan Zhang, 2015) have performed a case study for the road gradient effect on HDV vehicles emissions including HC.	vehicles included in the type: HDV>3.5 t of COPERT. This increase was applied to all LCVs

Factors	Missing Info	Main Findings	Comments
	From -0.06 to 0.06 (per 0.02).	As justified in the CO/FC table results could not be considered reliable in order to be used in this database.	based on the respective euro categories.
	HDV -	Conclusion:	
	14 t < HDV < 28 t: COPERT provides data (13 classes - From -0.06 to 0.06 (per 0.02).	The available information from literature is not reliable. COPERT provides with road gradient effect on VOC for HDVs. In this context, values based on HDV occupancy effect (expressed as rates) as described in COPERT could be applied directly for LCVs occupancy estimation on VOC emissions.	
	HDV - 28 t < HDV: COPERT provides data (13 classes - From -0.06 to 0.06 (per 0.02).		
Type of Fuel	L-category	L-category: No information was found.	L-category:

Factors	Missing Info	Main Findings	Comments
	Information for Diesel and Petrol.	LCVs: No information was found.	No additional fuel types were illustrated in this category.
	Information for Diesel and Petrol.	HDV (All types): No information was found.	Emission factors for LPG and CNG fuel types were produced for LCVs. The values of VOC were based on relevant Passenger car vehicles as
	 HDV - HDV < 14 t: Information for Diesel and Petrol. HDV - 14 t < HDV < 28 t: Information for Diesel and Petrol. 	Electric Vehicles: <u>Emissions from Electricity</u> Since all exclusive electric vehicles are charged using the grid, then the emissions (including CH4) produced from vehicles with this fuel type are defined by the emissions types and volumes produced in each country for the grids electricity production. In this framework the EU average VOC (Non- Methane) is 60.08 mg	For electricity powered LCVs the average value of 0.310 KWh/km was used for all LCVs sub-types of the database. The CH4 emissions were calculated by multiplying the value for LCVs with the average emission factor of 60.08 mg/KWh .
	Diesel and Petrol. HDV - 28 t < HDV:	 per KWh (ECOINVENT). Conclusion: L-Category: Since, L-Category vehicles include motorcycles, ATVs and mini cars that usually do not have alternative fuel types we can assume that the provision of values for relevant fuel types is not necessary. 	HDV - HDV < 14 t: Emission factors for LPG and CNG fuel types were produced for HDVs (<14 t). The values of VOC were

Factors	Missing Info	Main Findings	Comments
	Information for Diesel and Petrol.	Since COPERT model provides with CNG and LPG VOC values for passenger cars and buses, then we can use the relevant passenger cars (the most similar with LCVs – i.e. Large-SUV) to calculate the emissions for LCVs and the relevant Buses to calculate the emissions for HDVs.	based on relevant buses vehicles as provided by COPERT model. HDV - 14 t < HDV < 28 t:
		Moreover, for electricity powered vehicles we can use the average CH4 emitted per KWh in Europe and multiply it with consumption expressed as KWh/km. The average consumption was assumed as 0.31	No additional fuel types were illustrated in this category.
		KWh/Km.	HDV -
			28 t < HDV:
			No additional fuel types were illustrated in this category.
Wind	L-category	L-category:	L-category:
	no information	No information was found.	The wind effect was calculated by using the percentage increase in FC (calculated as presented in the
	LCVs	LCVs:	FC/CO2 table) and multiplied with
	no information	No information was found.	actual VOC values for all L-category types (including euro categories etc.).
	HDV - HDV < $14 t$:	HDV (All types):	

Factors	Missing Info	Main Findings	Comments
	no information	No information was found.	LCVs:
	HDV -	Conclusions:	The same methodology with L- Category was followed.
	14 t < HDV < 28 t: no information	Since wind affects directly the fuel consumption and since VOC is a product of non complete combustion (Mohsin Raza, 2018), then we can assume that PM follows the same pattern with FC. Since FC results are available for all 9 classes (wind from 40-80km/h to -4080km/h) and as a percentage of FC increase, the same percentage could be applied	HDV - HDV < 14 t: The same methodology with L- Category was followed.
	HDV - 28 t < HDV:	assuming that the more the fuel consumed the more the VOC produced (linear correlation) and the opposite. This solution supports also the consistency of the database.	HDV -
	no information		14 t < HDV < 28 t:
			The same methodology with L- Category was followed.
			HDV -
			28 t < HDV:
			The same methodology with L-Category was followed.
A/C	L-category	L-category:	L-category:
	no information	No information was found.	

Factors	Missing Info	Main Findings	Comments
	LCVs	LCVs:	No values were produced for this category.
	no information	No information was found.	LCVs:
	HDV - HDV < 14 t:	HDV (All types):	The A/C effect was calculated by using the percentage increase in FC
	no information	No information was found.	(as presented in FC/CO2 table) and multiplied with actual VOC values for all LCVs types (including euro
	HDV -	Conclusions:	categories etc.).
	14 t < HDV < 28 t:	L-Category: Since, L-Category vehicles include motorcycles, ATVs and	
	no information	mini cars that usually do not have A/C systems we can assume that this factor is not applied for this vehicle types.	HDV - HDV < 14 t:
			The same methodology with LCV
	HDV -	Since A/C affects directly the fuel consumption and since the VOC is a	was tonowed.
	28 t < HDV:	product of non complete combustion (Mohsin Raza, 2018), then we can	
	no information	assume that VOC follows the same pattern with FC. Since FC results	HDV -
		of FC increase, the same percentage could be used assuming that the	14 t < HDV < 28 t:
		more the fuel consumed the more the VOC produced (linear	The same methodology with LCV
		correlation) and the opposite. This solution supports also the consistency of the database.	was followed.

Factors	Missing Info	Main Findings	Comments
			HDV -
			28 t < HDV:
			The same methodology with LCV was followed.
Traffic	L-category	L-category:	L-category:
	no information	No information was found.	The traffic effect was calculated by using the percentage increase in FC (calculated as presented in the
	LCVs	LCVs:	FC/CO2 table) and multiplied with
	no information	Results are presented along with HDVs.	types (including euro categories etc.).
	HDV - HDV < 14 t:	HDV (All types):	
	no information	In Zhang et al (Zhang Kai, 2011) study we have the HC and other	LCVs:
	HDV -	emissions results related with congestion as presented in Figure 10: "Summary of speed/acceleration profiles, emission factors and fuel consumption rates for LDV and HDV grouped by traffic condition.".	The same methodology described for L-Category was followed.
	14 t < HDV < 28 t:		
	no information	Conclusions:	HDV - HDV < 14 t:
	HDV -	Since VOC could be considered that follows the same pattern with FC (see previous results), then we could multiply increase rates for different traffic conditions with the actual-initial values of VOC.	The same methodology described for L-Category was followed.

Factors	Missing Info	Main Findings	Comments
	28 t < HDV:		HDV -
	no information		14 t < HDV < 28 t:
			The same methodology described for L-Category was followed.
			HDV -
			28 t < HDV:
			The same methodology described for L-Category was followed.

4.3.2.10 SO2

General (for all vehicle categories):

The SO2 emitted is estimated by making the assumption that 100% of S (Sulphur) that is diluted in the fuel is converted into SO2.

So, the SO2 is calculated by using FC (Fuel consumption) and fuel concentration in Sulfur. For the estimation of SO2 by taking into consideration all other correction factors, the FC results will be also used along with the transformation function.

The transformation function from FC to SO2 is the following:

$$E_{SO2} = 2 \times K_S \times FC \times dF \qquad \qquad Eq. 5$$

Where,

E₅₀₂: SO2 emissions per year [kg/year]

K_s: Weight related sulphur content in fuel [kg/kg fuel].

FC: Total annual consumption of fuel [lt/year]

dF: Density of Fuel consumed [kg/lt]

By introducing sulphur content from fuel specification the equation is transformed as follows:

$$E_{SO2} = 2 \times 5 \times 10^{-5} \times FC \times dF \rightarrow$$

$$E_{SO2} = a \times 10^{-5} \times FC \qquad Eq. 6$$

Where,

a: constant (~7.37 for gasoline and ~8.35 for diesel).

FC: Total annual consumption of fuel [lt/year]

Based on the above results the sulfur content should be estimated for all fuel types in order to estimate the final SO2 emissions with the usage of the above equation.

Diesel

The sulfur content limit in EU diesel is 10mg/kg of fuel (TranpsportPolicy.net).

For the purposes of our database the **sulfur content of diesel** will be estimated as **10mg/kg** of fuel.

Petrol

The sulfur content limit in EU petrol is 10mg/kg of fuel (TranpsportPolicy.net).

For the purposes of our database the **sulfur content of Petrol** will be estimated as **10mg/kg** of fuel.

CNG Vehicles:

The sulfur content of CNG fuel from a study of (Kado NY, 2005) was around 2 ppmv.

For the purposes of our database the **sulfur content of CNG** will be estimated as **2 mg/kg** of fuel.

LPG Vehicles:

The Sulfur content in LPG fuel is between **0.18 to 0.27 mg/kg** (Ruissen).

For the purposes of our database the **sulfur content of CNG** will be estimated as **0.2 mg/kg** of fuel.

Electric Vehicles:

Since all exclusive electric vehicles are charged using the grid, then the emissions (including SO2) produced from vehicles with this fuel type are defined by the emissions types and volumes produced in each country for the grids electricity production. Furthermore, electricity was estimated only for LCV vehicles.

In this framework the EU average SO2 is **3.67 grams per KWh** (ECOINVENT). The average consumption for electric LCVs was assumed as **0.31 KWh/Km**.

Conclusions:

Based on the above justifications, SO2 emissions were calculated based on results presented in the table for FC/CO2 and the results derived from the above equations. The sulfur content for each fuel type was used in the equation as described above (estimations of average sulfur content for each fuel type).

Moreover, for the case of electric LCVs (special case) the average energy consumption (0.31 KWh/Km) was multiplied with the average SO2 derived from the grid power production (3.67 g/KWh).

4.3.3 Factors Classes

As explained above one of the main goals of GYR model was to update factors types in order to be more detailed and to reflect recent scientific literature results.

In this context the following table illustrates the emission factors classes as well as a relative description responding to why and how these classes where produced.

Emission Factors	Classes	Rationale
Occupancy	10 occupancy Classesrepresentingloadsfrom 0% to 100% (.EachClassrepresents a step of10%.	When a vehicle is completely empty then it is considered that has the value of 0% and when a vehicle is loaded in the total of its capacity then it is considered that occupancy has a value of 100%.
Road Conditions	15 IDs. Each ID represents a road age from 1 to 15 years.	Road conditions refer to the quality of road tarmac. Based on literature (see relevant chapter) the main parameter affecting road condition is the number of years before the construction of the road (road age).
Road gradient	-6% to 6% with a step of 1%	This classification is considered detailed and it covers all road gradient cases (including the initial emissions for class with 0% gradient).
Type of Fuel	Petrol, Diesel, CNG, LPG and Electricity	CNG and LPG fueled vehicles for LCVs and lighter class of HDVs (HDV < 14 t) added in order to illustrate modern fleets. Electricity powered LCVs were added since they are recently market available solutions for commercial purposes.
Wind	9 wind classes from the range of -8040 km/h to 40 - 80 km/h.	The wind range from -5 to 5 km/h illustrates the no wind effect (initial emissions – not affected by the wind). This classification is considered representative of the wind effect in vehicular emissions.
A/C	135 IDs related with the relevant a) HI and b) Traffic mode	Traffic mode and heat index are directly affecting A/C power consumption in each vehicle and consequently power consumption affects emissions release.

Table 28: GYR database emission factors and respective Classes

Emission Factors	Classes	Rationale
		Based on that this emission factor was formed as a combination of the above parameters.
Traffic	Threeclassesincluding a) No-LowTraffic, b)MediumTraffic and c)HeavyTraffic	Traffic classes are considered representative of the relevant effect since low speeds, stops and acceleration/deceleration affect consumption and consequently emissions.
Vehicle Types	L-Category, Light Commercial Vehicles, HDV < 14 t, 14 t < HDV < 28 t, 28 t < HDV	Each vehicle type consists of sub-types as described in the below rows. Each of these classes include also other aspects (vehicle subcategories) such as vehicles with specific EURO categories and with applied emission reduction technologies

5 Environmental impact of LIFE GYR project

5.1 Introduction

After the test and the evaluation of GYR platform by the demonstrators of LIFE GYR project, GYR Team started the real life demonstration of GYR platform into the operational business environment of the 5 demonstrators. The real life demonstration lasted for 17 months and it started on December 1st, 2021 and it ended on April 30th, 2023. In addition, the GYR platform was demonstrated also in the operational business environment of 3 new companies which agreed to use the GYR service for a period of 7 months free and based on the results of this period to decide to purchase or not the service after the end of the project.

5.2 Impact of the project

The environmental impact of the LIFE GYR project corresponds to the environmental benefices resulted by the use of GYR service. The GYR service is used during the real life demonstration period of 17 months. The obtained routing plans are compared using the simulation tool developed in Action C3 which simulated the corresponding routing plans if GYR service is not used and instead the heuristic approach based on the experience of the managers of the companies is used.

5.2.1 Impact - ATHINAKI, PLUS KOUKOUZELIS

The three Greek Demonstrators (ATHINAIKI, KOUKOUZELI and PLUS), after suggestion of UTH, have strategically decided that a synergy among them would not only acquire socioeconomic benefits for them as companies but also significant environmental benefits, on

which they and their customers strongly believe in. Moreover, the development of the GYR platform assisted towards the goal of the synergy since it is used by all three Demonstrators and it is a common tool that all three use in their procedures of routing.

ATHINAIKI, KOUKOUZELI and PLUS deal with the delivery and pickup of different products in Attica region by using a limited fleet of vehicles. The customers are scattered in the Attica region in different locations. The products are measured by using different types of packing (e.g., pallets, boxes, etc.) depending on the product that must be delivered or picked up. The delivery and pickup needs to be accomplished within one daily driving shift and some locations can or cannot be reached at certain hours of the day. The VRP of ATHINAKI, PLUS, KOUKOUZELIS is categorized as an Heterogeneous Capacitated Closed VRP with Time windows and Simultaneous Pick up-Delivery.

The impact of the Greek demonstrators is presented in the following table:

353 daily plans, Dec21-April23 (Actual and Simulation Estimated)					
	Actual	Simulation	Difference	Difference (%)	
		Estimated	(Absolute)		
General indexes					
Kilometers	473,041.66	590,201.63	-117,159.97	-19.85%	
Routes	3,530	3,883	353	-9.09%	
Fuel consumed and	Emissions en	mitted			
FC (Tones)	137.024	276.012	-138.988	-50.36%	
CO2 (Tones)	434.229	874.682	-440.453	-50.36%	
CH4 (Kilograms)	21.779	41.644	-19.865	-47.70%	
CO (Kilograms)	978.502	1,908.724	-930.221	-48.74%	
N2O (Kilograms)	10.075	20.439	-10.365	-50.71%	
NH3 (Kilograms)	4.029	8.121	-4.092	-50.39%	
NOx (Tones)	4.331	8.546	-4.216	-49.33%	
PM (Kilograms)	71.875	139.427	-67.551	-48.45%	
VOC (Kilograms)	201.259	387.445	-186.186	-48.05%	
SO2 (Kilograms)	8.907	17.941	-9.034	-50.36%	
			Average	-49.44%	

Table 29: Impact of ATHINAKI, PLUS KOUKOUZELIS

The total kilometer travelled by the Greek demonstrators during the real life demonstration using GYR service were 473,041km and using the simulation tool they were 590,201km. The total kilometer saved using GYR service were equal to 117,159km, which correspond to a decrease of 19.85%. In addition to the total kilometer travelled the total number of route implemented were also decreased by 9.09%, resulting a reduced number of truck used, a reduced operational cost and a reduced maintenance cost (see deliverable of Action C2).

The emissions emitted were decreased by a minimum of 47.7% (i.e. CH4) to a maximum of 50.39% (i.e. NH3). The average decrease of emission emitted were 49.44%.

5.2.2 Impact – CEDA's customer

CEDA searched among its customers in order to find a demonstrator that suits the requirements of the LIFE GYR project and selected DS Logistic s.r.o. DS Logistic s.r.o. is a strong company that focuses on transport and forwarding, earthworks, construction work, vehicle servicing, and fuel sales. They offer both complete supplies of crushed aggregate, washed and kicked sands (material including transportation) as well as their own transportation. DS Logistic s.r.o. Company deals with the pickup and delivery of different types of products such as rocks, sands etc. The products are handled unpacked. The routing plan is composed throughout the day according to the demand of customers. The deliveries are realized as a transportation of a whole load from loading destination to unloading destination without partial deliveries along the route. In order to serve a consecutive order, a driver has to drive from an unloading destination to following loading destination. All the deliveries and pickups need to be accomplished within the working horary of the vehicles and by taking into consideration the time limitation of the customers and visiting locations. The optimization goal for DS Logistic s.r.o. Company accomplished by assigning the deliveries and pickups to the vehicles in the most convenient order. The vehicles start either from the home depot Strednice or from other specified location (usually place of unload from previous day) and, unlike the previously mentioned Demonstrators, it is not always necessary to return to the Depot after the completion of the day. The VRP of DS Logistic s.r.o. Company is categorized as a Heterogeneous Capacitated Open VRP with Time windows with two points of visits per route, the first for the pick-up of a bulk freight and the second for the delivery of the picked-up freight.

The impact of DS Logistic s.r.o. is presented in the following table:

356 daily plans, Dec21-April23 (Actual and Simulation Estimated)					
	Actual	Simulation	Difference	Difference (%)	
		Estimated	(Absolute)		
General indexes					
Kilometers	1,723,205.88	1,958,387.77	-235,181.89	-12.01%	
Routes	3,945	3,945	0	0.00%	
Fuel consumed and	d Emissions em	itted			
FC (Tones)	728.597	1,495.320	-766.723	-51.27%	
CO2 (Tones)	2,308.924	4,738.669	-2,429.745	-51.27%	
CH4 (Kilograms)	13.738	28.197	-14.459	-51.28%	
CO (Kilograms)	3,338.832	6,959.486	-3,620.654	-52.02%	
N2O (Kilograms)	31.365	64.374	-33.010	-51.28%	
NH3 (Kilograms)	7.776	15.961	-8.184	-51.28%	
NOx (Tones)	13.980	29.139	-15.160	-52.02%	
PM (Kilograms)	99.398	207.234	-107.836	-52.04%	
VOC (Kilograms)	133.604	273.401	-139.797	-51.13%	
SO2 (Kilograms)	47.359	97.196	-49.837	-51.27%	
			Average	-51.49%	

Table 30: Impact of DS Logistic s.r.o.

The total kilometer travelled by the customer of CEDA during the real life demonstration using GYR service were 1,723,205km and using the simulation tool they were 1,958,387km. The total kilometer saved using GYR service were equal to 235,181km, which correspond to a decrease of 12.01%. The reduced kilometer travelled resulted a reduced number of truck used, a reduced maintenance cost and a reduced operational cost (see deliverable of Action C2). The number of routes implemented were the same in both scenarios (i.e. simulation and actual) as each route is consisted by a pair of visiting points (i.e. first point for pick-up and second point for delivery of the picked-up freight) and the visiting points are the same in both scenarios.

The emissions emitted were decreased by almost the same percentage with an average decrease of 51.49%.

5.2.3 Impact – ITACA's customer

ITACA proposed as a Demonstrator a courier company, namely GLS Company. It's a GLS (Courier Company) official licensee for Cosenza, operating in long route deliveries and also in urban ones. GLS Italy deals with the delivery and pickup of different products all over Italy. GLS Company focuses on the deliveries and pickups around Cosenza, Rende and Castrobilero by a limited fleet of vehicles. The customers are scattered in these regions in different locations. The delivery and pickup needs to be accomplished within the working time of the vehicles. The vehicles start from the depot and drivers know before they start which customers need to visit and the order of visiting the customers is decided based on their locations and their experience on driving at a specific region. The VRP of GLS Company is categorized as a homogeneous VRP with limited Time windows with pick-up and delivery.

The impact of the ITACA's customer which demonstrated the GYF service is presented in the following table:

300 daily plans, Dec21-April23 (Actual and Simulation Estimated)							
	Actual	Simulation	Difference	Difference (%)			
		Estimated	(Absolute)				
General indexes	General indexes						
Kilometers	159,290.94	207,552.54	-48,262.00	-23.25%			
Routes	3,746	3,746	0	0.00%			
Fuel consumed and	d Emissions e	mitted		·			
FC (Tones)	32.653	65.224	-32.570	-49.94%			
CO2 (Tones)	103.478	206.694	-103.215	-49.94%			
CH4 (Kilograms)	33.775	67.463	-33.689	-49.94%			
CO (Kilograms)	9,533.685	19,043.177	-9,509.492	-49.94%			
N2O (Kilograms)	7.735	15.450	-7.715	-49.94%			
NH3 (Kilograms)	0.748	1.493	-0.746	-49.94%			
NOx (Tones)	0.596	1.191	-0.595	-49.94%			
PM (Kilograms)	0.830	1.658	-0.828	-49.94%			
VOC (Kilograms)	840.538	1,678.943	-838.405	-49.94%			
SO2 (Kilograms)	2.122	4.240	-2.117	-49.94%			
			Average	-49.94%			

Table 31: Impact of GLS Company

The total kilometer travelled during the real life demonstration using GYR service were 159,290km and using the simulation tool they were 207,552km. The total kilometer saved using GYR service were equal to 48,262km, which correspond to a decrease of 23.55%. The total number of route were not change as the company strategic decision is to use every day the entire available fleet of vehicles in order to decrease the workload of each driver and at the same time deliver the fright the soonest possible.

The emissions emitted were decreased by 49.94%. The decrease is the same for all the emission types for 2 reasons: 1) the vehicle fleet is homogenous, and 2) the traffic conditions were the same as the vehicles were circulating at the same limited urban region.

5.2.4 Impact - DIGICOM

The first new customer of GYR company is Digicom Systems S.A. which is an innovative Business software development company focusing on logistics applications as well as custom S/W solutions and integrations. Digicom Systems S.A. provides consulting services for S/W Analysis and Design, Business Intelligence Reporting and Performance Tuning upon specific RDBMS Systems and lastly routing planning services.

The impact of Digicom Systems S.A. is presented in the following table:

104 daily plans, Oct22-April23 (Actual and Simulation Estimated)					
	Actual	Simulation	Difference	Difference (%)	
		Estimated	(Absolute)		
General indexes					
Kilometers	906,930.92	1,162,117.53	-255,186.61	-21.96%	
Routes	6,768	7,646	-878	-11.48%	
Fuel consumed and	l Emissions e	emitted			
FC (Tones)	263.561	545.240	-281.678	-51.66%	
CO2 (Tones)	828.510	1,713.971	-885.461	-51.66%	
CH4 (Kilograms)	41.707	81.903	-40.195	-49.08%	
CO (Kilograms)	1,871.444	3,749.151	-1,877.707	-50.08%	
N2O (Kilograms)	19.359	40.337	-20.978	-52.01%	
NH3 (Kilograms)	7.784	16.113	-8.329	-51.69%	
NOx (Tones)	8.318	16.858	-8.541	-50.66%	
PM (Kilograms)	137.627	274.186	-136.558	-49.81%	
VOC (Kilograms)	387.920	766.959	-379.039	-49.42%	
SO2 (Kilograms)	16.893	34.947	-18.054	-51.66%	
			Average	-50.77%	

Table 32: Impact of DIGICOM

The total kilometer travelled during the real life demonstration using GYR service by the customers of Digicom Systems S.A. were 906,930km and using the simulation tool they were 1,162,117km. The total kilometer saved using GYR service were equal to 255,186km, which correspond to a decrease of 21.96%. In additional to the total kilometer travelled the total number of route implemented were also decreased by 11.48%, resulting a reduced number of truck used, a reduced maintenance cost and a reduced operational cost (see deliverable of Action C2).

The emission emitted were decreased by a minimum of 49.08% (i.e. CH4) to a maximum of 51.69% (i.e. NH3). The average decrease of emission emitted were 50.77%.

5.2.5 Impact - YOUTRADESMART

The second new customer of GYR company is YOUTRADESMART which is an innovative business consulting company focusing on logistics and environmental monitoring services beyond others. YOUTRADESMART have several 3PL companies to which provides consultant services. YOUTRADESMART provided as a re-seller GYR service to its customers.

The impact of YOUTRADESMART is presented in the following table:

102 daily plans, Oct22-April23 (Actual and Simulation Estimated)					
	Actual	Simulation	Difference	Difference (%)	
		Estimated	(Absolute)		
General indexes					
Kilometers	665,624.19	755,376.40	-89,752.20	-11.88%	
Routes	4,967	5,102	-135	-2.65%	
Fuel consumed and	l Emissions e	emitted	•		
FC (Tones)	193.436	354.406	-160.970	-45.42%	
CO2 (Tones)	608.068	1,114.081	-506.012	-45.42%	
CH4 (Kilograms)	30.610	53.237	-22.627	-42.50%	
CO (Kilograms)	1,373.510	2,436.948	-1,063.438	-43.64%	
N2O (Kilograms)	14.208	26.219	-12.011	-45.81%	
NH3 (Kilograms)	5.713	10.474	-4.761	-45.46%	
NOx (Tones)	6.105	10.958	-4.853	-44.29%	
PM (Kilograms)	101.009	178.221	-77.212	-43.32%	
VOC (Kilograms)	284.706	498.523	-213.817	-42.89%	
SO2 (Kilograms)	12.398	22.715	-10.317	-45.42%	
			Average		

Table 33: Impact of YOUTRADESMART

The total kilometer travelled during the real life demonstration using GYR service by the customers of YOUTRADESMART were 665,624km and using the simulation tool they were 755,376km. The total kilometer saved using GYR service were equal to 89,752km, which correspond to a decrease of 11.88%. In additional to the total kilometer travelled the total number of route implemented were also decreased by 2.65%, resulting a reduced number of truck used, a reduced maintenance cost and a reduced operational cost (see deliverable of Action C2).

The emission emitted were decreased by a minimum of 42.5% (i.e. CH4) to a maximum of 45.46% (i.e. NH3). The average decrease of emission emitted were 44.42%.

5.2.6 Impact - DASCO S.A.

The third new customer of GYR Company is DASCO S.A. which is a 3PL company located in Peloponnese focusing on product delivery. DASCO S.A. has several type of customers such as mini markets and kiosks where fast-moving consumer goods (FMCG) are delivered. The FMCG are nondurable products that sell quickly at relatively low cost. FMCGs have low profit

margins and high-volume sales. The FMCGs delivered by DASCO S.A. include gum, delicatessen, tobacco etc.

The impact of DASCO S.A. is presented in the following table:

102 daily plans, Oct22-April23 (Actual and Simulation Estimated)							
	Actual	Simulation	Difference	Difference			
		Estimated	(Absolute)	(%)			
General indexes	General indexes						
Kilometers	705,348.38	842,924.59	-137,576.20	-16.32%			
Routes	5,264	5,546	-282.00	-5.08%			
Fuel consumed and	Emissions en	nitted					
FC (Tones)	211.136	401.453	-190.318	-47.41%			
CO2 (Tones)	599.317	1,199.197	-599.880	-50.02%			
CH4 (Kilograms)	31.407	58.467	-27.060	-46.28%			
CO (Kilograms)	1,355.189	2,624.532	-1,269.343	-48.36%			
N2O (Kilograms)	15.170	29.374	-14.204	-48.35%			
NH3 (Kilograms)	6.199	11.829	-5.630	-47.59%			
NOx (Tones)	6.655	12.405	-5.750	-46.35%			
PM (Kilograms)	109.692	201.367	-91.675	-45.53%			
VOC (Kilograms)	309.623	563.670	-254.047	-45.07%			
SO2 (Kilograms)	13.511	25.710	-12.199	-47.45%			
			Average	-47.24%			

Table 34: Impact of DASCO S.A

The total kilometer travelled during the real life demonstration using GYR service by DASCO S.A. trucks were 705,348km and using the simulation tool they were 842,924km. The total kilometer saved using GYR service were equal to 137,576km, which correspond to a decrease of 16.32%. In additional to the total kilometer travelled the total number of route implemented were also decreased by 5.08%, resulting a reduced number of truck used, a reduced maintenance cost and a reduced operational cost (see deliverable of Action C2).

The emission emitted were decreased by a minimum of 46.28% (i.e. CH4) to a maximum of 50.02% (i.e. CO2). The average decrease of emission emitted were 47.24%.

5.2.7 Impact - Total

The total impact of the real life demonstration of GYF service resulted by the 5 demonstrators and the 3 new customers of GYR company is given as a sum-up of the previously data presented, in the following table:

Real life Demonstration (Actual and Simulation Estimated)						
Actual Simulation Difference Difference						
		Estimated	(Absolute)	(%)		
General indexes	General indexes					

Table 35: Total impact of Real Life Demonstration

Kilometers	4,633,441.58	5,516,560.45	-883,118.87	-16.01%
Routes	28,220.00	29,868.00	-1,648	-5.52%
Fuel consumed and	l Emissions em	itted		
FC (Tones)	1,566.407	3,137.654	-1,571.247	-50.08%
CO2 (Tones)	4,882.527	9,847.293	-4,964.767	-50.42%
CH4 (Kilograms)	173.016	330.911	-157.895	-47.72%
CO (Kilograms)	18,451.162	36,722.018	-18,270.855	-49.75%
N2O (Kilograms)	97.912	196.194	-98.282	-50.09%
NH3 (Kilograms)	32.249	63.991	-31.742	-49.60%
NOx (Tones)	39.984	79.098	-39.114	-49.45%
PM (Kilograms)	520.432	1,002.093	-481.661	-48.07%
VOC (Kilograms)	2,157.650	4,168.942	-2,011.292	-48.24%
SO2 (Kilograms)	101.189	202.748	-101.559	-50.09%
			Average	-49.35%

The total kilometers travelled during the real life demonstration using GYR service were 4,633,441km and using the simulation tool they were 5,516,560km. The total kilometers saved using GYR service were equal to 883,118km, which correspond to a decrease of 16.01%. In additional to the total kilometers travelled the total number of routes implemented were also decreased by 5.52%, resulting a reduced number of truck used, a reduced maintenance cost and a reduced operational cost (see deliverable of Action C2).

The emission emitted were decreased by a minimum of 48.07% (i.e. PM) to a maximum of 50.42% (i.e. CO2). The average decrease of emission emitted were 49.35%.

5.2.8 Foreseen vs Actual environmental impact

The percentage achievement comparing the impact foreseen and the impact achieved is presented in the following table:

Fuel consumed & Pollutant	Savings	Savings	Percentage
emitted (tns)	Foreseen	Actual	Achievement
FC	No foreseen	1571.247331	No foreseen
CO2	8885.697	4964.766548	55.87%
CH4	8.939	0.157894506	1.77%
СО	73.133	18.27085537	24.98%
N2O	No foreseen	0.098281616	No foreseen
NH3	1.869	0.031742329	1.70%
NOx	42.255	39.11386862	92.57%
PM	4.632	0.481660713	10.40%
VOC	10.564	2.011292094	19.04%
SO2	8.126	0.101558902	1.25%

Table 36: Foreseen vs Actual environmental impac	Table 36:	Foreseen vs	Actual	environmental	impact
--	-----------	-------------	--------	---------------	--------

The goal concerning the NOx saved was achieved by a high percentage which is equal to 92.57%. Additionally, more than 55% of the goal for CO2 was achieved. The goal for CO and VOC emitted were achieved by 25% and 19% respectively and the goal for PM by 10%. Finally,

only a small percentage (less than 2%) of the goal for CH4, NH3 and SO2 was achieved. We have to notice that the impact associated with the fuel consumed and the N2O emitted was not foreseen in the frame of the project and for this reason there is not comparison between the fuel consumed and N2O emitted using GYR service and using the simulation tool.

5.2.9 Justification of deviations

The above deviations were resulted mainly by one major error to the initial calculations followed by GYR team to estimate the potential benefit using GYR service and one major wrong assumption taken when the environmental impact of the project was estimated.

5.2.9.1 Wrong calculation

The minimum requirements to approximate a baseline of emissions emitted by the demonstrators of the project used was the pollution emission factors per tonne-kilometre (tkm) for LDVs and the freight traffic demand in tkm of each demonstrator.

Ecoinvent database, for an average fleet of light duty vehicles up to 3,5 tones, gives the following emission factors: NOX=0.52, PM=0.057, CO=0.9, NH3=0.023, CO2=109.35, CH4=0.11, NMVOC=0,13 and SO2=0,1.

KOUKOUZELIS: The 12 months before the starting month of the project, the total distance travelled by KOUKOUZELIS's trucks was around 5,500 km during 140 trips (~39km/trip), and the total amount of freight transported was around 120 tn (~ 0,85 tn/trip). Hence, in each trip the traffic demand was 0.85 x 39 \approx 33.7 tkm per trip. The total yearly tkm for KOUKOUZELIS is equal to 4,718tkm and results by multiplying the 33.7 tkm per trip by 140 trips. When the environmental impact was calculated, the total tkm was claculated wrongly by multiplying the tkm per trip by the total kilometers (33.7x5,500=185,204) which give a value to the total tkm 39 larger than the correct one.

PLUS: The 12 months before the starting month of the project, the total distance travelled by PLUS's trucks was around 172.602km during 1.040 trips (~166 km/trip), and the total amount of cold cargo transported was around 2.846 tn (~ 2,73tn/trip). Hence, in each trip the traffic demand was 166 x 2.73 \approx 453.18 tkm per trip. The total yearly tkm for PLUS is equal to 471,307.2tkm and results by multiplying the 453.18 tkm per trip by 1,040 trips. When the environmental impact was calculated, the total tkm was calculated wrongly by multiplying the total kilometers (453.18x172.602=78,219,774.36) which give a value to the total tkm 166 larger than the correct one.

ATHINAKI: The 12 months before the starting month of the project, the total distance travelled by ATHINAKI's trucks was around 978.078km during 4.520 trips (~216 km/trip), and the total amount of dry cargo transported was around 11.023tn (~ 2,45tn/trip). Hence, in each trip the traffic demand was 216 x 2.45 \approx 639.45 tkm per trip. The total yearly tkm for ATHINAKI is equal to 2,890,314.2tkm and results by multiplying the 639.45 tkm per trip by 4,520 trips. When the environmental impact was calculated, the total tkm was calculated wrongly by multiplying the tkm per trip by the total kilometers (639.45x978.078=625,431,977.1) which give a value to the total tkm 216 larger than the correct one.

CEDA and ITACA demonstrators: We assumed that the customer of CEDA and ITACA have a yearly traffic demand of at least 1.5% of the total demand of the Greek demonstrators which corresponds to a traffic demand of at least 10,000,000tkm both. Based on the wrong calculation that the Greek demonstrators would have a total demand of 703,836,955tkm (=185,204+78,219,774+625,431,977) the 1,5% of this demand is equal to 10,557,554.3tkm.

5.2.9.2 Wrong assumption

The above assessment of the environmental impact of the project was done based on the assumption that the tons of freight delivered or pick-up were transported for the entire km travelled by the trucks. This assumption was wrong for all demonstrators as for instance the trucks of ATHINAKI, PLUS, KOUKOUZELIS and ITACA start from the depot and progressively decrease their load factor by visiting one by one the delivery points and when the last point is served they return to depot empty. Additionally, the trucks of CEDA's demonstrator start form the depot with their freight and go to their final destination to deliver it and then go empty to the next visiting point to pick-up the next freight to deliver etc. As a consequence of this wrong assumption the total tkm of each demonstrator were 2-3 times overestimated.

6 Annex I

vehicle_classID	vehicle_type	vehicle_description	typeOfEngine	typeOfFuel
1	1	Mopeds 2-stroke <50 cm ³	Conventional	1
2	1	Mopeds 2-stroke <50 cm ³	Euro 1	1
3	1	Mopeds 2-stroke <50 cm ³	Euro 2	1
4	1	Mopeds 2-stroke <50 cm ³	Euro 3	1
5	1	Mopeds 2-stroke <50 cm ³	Euro 4	1
6	1	Mopeds 2-stroke <50 cm ³	Euro 5	1
7	1	Mopeds 4-stroke <50 cm ³	Conventional	1
8	1	Mopeds 4-stroke <50 cm ³	Euro 1	1
9	1	Mopeds 4-stroke <50 cm ³	Euro 2	1
10	1	Mopeds 4-stroke <50 cm ³	Euro 3	1
11	1	Mopeds 4-stroke <50 cm ³	Euro 4	1
12	1	Mopeds 4-stroke <50 cm ³	Euro 5	1
13	1	Motorcycles 2-stroke >50 cm ³	Conventional	1
14	1	Motorcycles 2-stroke >50 cm ³	Euro 1	1
15	1	Motorcycles 2-stroke >50 cm ³	Euro 2	1
16	1	Motorcycles 2-stroke >50 cm ³	Euro 3	1
17	1	Motorcycles 2-stroke >50 cm ³	Euro 4	1
18	1	Motorcycles 2-stroke >50 cm ³	Euro 5	1
19	1	Motorcycles 4-stroke <250 cm ³	Conventional	1
20	1	Motorcycles 4-stroke <250 cm ³	Euro 1	1
21	1	Motorcycles 4-stroke <250 cm ³	Euro 2	1
22	1	Motorcycles 4-stroke <250 cm ³	Euro 3	1
23	1	Motorcycles 4-stroke <250 cm ³	Euro 4	1
24	1	Motorcycles 4-stroke <250 cm ³	Euro 5	1
25	1	Motorcycles 4-stroke 250 - 750 cm ³	Conventional	1
26	1	Motorcycles 4-stroke 250 - 750 cm ³	Euro 1	1
27	1	Motorcycles 4-stroke 250 - 750 cm ³	Euro 2	1
28	1	Motorcycles 4-stroke 250 - 750 cm ³	Euro 3	1
29	1	Motorcycles 4-stroke 250 - 750 cm ³	Euro 4	1
30	1	Motorcycles 4-stroke 250 - 750 cm ³	Euro 5	1
31	1	Motorcycles 4-stroke >750 cm ³	Conventional	1
32	1	Motorcycles 4-stroke >750 cm ³	Euro 1	1
33	1	Motorcycles 4-stroke >750 cm ³	Euro 2	1
34	1	Motorcycles 4-stroke >750 cm ³	Euro 3	1
35	1	Motorcycles 4-stroke >750 cm ³	Euro 4	1
36	1	Motorcycles 4-stroke >750 cm ³	Euro 5	1
37	1	Quad & ATVs	Euro 1	1
38	1	Quad & ATVs	Euro 2	1

39	1	Quad & ATVs	Euro 3	1
40	1	Quad & ATVs	Euro 4	1
41	1	Quad & ATVs	Euro 5	1
42	1	Micro-car	Euro 1	2
43	1	Micro-car	Euro 2	2
44	1	Micro-car	Euro 3	2
45	1	Micro-car	Euro 4	2
46	1	Micro-car	Euro 5	2
47	2	N1-I	CNG	4
48	2	N1-I	Euro 1	1
49	2	N1-I	Euro 2	1
50	2	N1-I	Euro 3 (PFI)	1
51	2	N1-I	Euro 4 (PFI)	1
52	2	N1-I	Euro 5 (PFI)	1
53	2	N1-I	Euro 6 up to 2016 (GDI)	1
54	2	N1-I	Euro 6 up to 2016 (PFI)	1
55	2	N1-I	Euro 6 up to 2016 (GDI+GPF)	1
56	2	N1-I	Euro 6 2017- 2019 (GDI)	1
57	2	N1-I	Euro 6 2017- 2019 (PFI)	1
58	2	N1-I	Euro 6 2017- 2019 (GDI+GPF)	1
59	2	N1-I	Euro 6 2020+ (GDI)	1
60	2	N1-I	Euro 6 2020+ (PFI)	1
61	2	N1-I	Euro 6 2020+ (GDI+GPF)	1
62	2	N1-II	CNG	4
63	2	N1-II	Euro 1	1
64	2	N1-II	Euro 2	1
65	2	N1-II	Euro 3 (PFI)	1
66	2	N1-II	Euro 4 (PFI)	1
67	2	N1-II	Euro 5 (PFI)	1
68	2	N1-11	Euro 6 up to 2017 (GDI)	l
69	2	N1-II	Euro 6 up to 2017 (PFI)	1
70	2	N1-II	Euro 6 up to 2017 (GDI+GPF)	1

LIFE GreenYourRoute: A European innovative logistic platform for last mile delivery of goods in urban environment

71	2	N1-II	Euro 6 2018- 2020 (GDI)	1
72	2	N1-II	Euro 6 2018-	1
			2020 (PFI)	
73	2	N1-II	Euro 6 2018-	1
			2020	
			(GDI+GPF)	
74	2	N1-II	Euro 6 2021+	1
75	2	N11 II	(GDI)	1
75	2	IN1-II	Euro 6 2021+ (PEI)	1
76	2	N1-II	(111) Euro 6 2021+	1
70	<u> </u>		(GDI+GPF)	1
77	2	N1-III	CNG	4
78	2	N1-III	Euro 1	1
79	2	N1-III	Euro 2	1
80	2	N1-III	Euro 3 (PFI)	1
81	2	N1-III	Euro 4 (PFI)	1
82	2	N1-III	Euro 5 (PFI)	1
83	2	N1-III	Euro 6 up to 2017 (GDI)	1
84	2	N1-III	Euro 6 up to	1
) 14 111	2017 (PFI)	
85	2	N1-III	Euro 6 up to	1
			(GDI+GPF)	
86	2	N1-III	Euro 6 2018-	1
			2020 (GDI)	
87	2	N1-III	Euro 6 2018-	1
			2020 (PFI)	
88	2	N1-III	Euro 6 2018-	1
			2020 (CDL+CDE)	
80	2	N1 III	(GDI+GFF)	1
09	2	111-111	(GDI)	1
90	2	N1-III	Euro 6 2021+	1
	_		(PFI)	-
91	2	N1-III	Euro 6 2021+	1
			(GDI+GPF)	
92	2	N1-I	LPG	5
93	2	N1-I	Euro 1	2
94	2	N1-I	Euro 2	2
95	2	N1-I	Euro 3 (DPF)	2
96	2	N1-I	Euro 4 (DPF)	2
97	2	N1-I	Euro 5 (DPF)	2
98	2	N1-1	Euro 6 up to $201((DDE))$	2
			2016 (DPF)	

LIFE GreenYourRoute: A European innovative logistic platform for last mile delivery of goods in urban environment

99	2	N1-I	Euro 6 up to 2016 (DPF+SCR)	2
100	2	N1-I	Euro 6 up to 2016 (LNT+DPF)	2
101	2	N1-I	Euro 6 2017- 2019 (DPF)	2
102	2	N1-I	Euro 6 2017- 2019 (DPF+SCR)	2
103	2	N1-I	Euro 6 2017- 2019 (LNT+DPF)	2
104	2	N1-I	Euro 6 2020+ (DPF)	2
105	2	N1-I	Euro 6 2020+ (DPF+SCR)	2
106	2	N1-I	Euro 6 2020+ (LNT+DPF)	2
107	2	N1-II	LPG	5
108	2	N1-II	Euro 1	2
109	2	N1-II	Euro 2	2
110	2	N1-II	Euro 3 (DPF)	2
111	2	N1-II	Euro 4 (DPF)	2
112	2	N1-II	Euro 5 (DPF)	2
113	2	N1-II	Euro 6 up to 2017 (DPF)	2
114	2	N1-II	Euro 6 up to 2017 (DPF+SCR)	2
115	2	N1-II	Euro 6 up to 2017 (LNT+DPF)	2
116	2	N1-II	Euro 6 2018- 2020 (DPF)	2
117	2	N1-II	Euro 6 2018- 2020 (DPF+SCR)	2
118	2	N1-II	Euro 6 2018- 2020 (LNT+DPF)	2
119	2	N1-II	Euro 6 2021+ (DPF)	2
120	2	N1-II	Euro 6 2021+ (DPF+SCR)	2
121	2	N1-II	Euro 6 2021+ (LNT+DPF)	2

122	2	N1-III	LPG	5
123	2	N1-III	Euro 1	2
124	2	N1-III	Euro 2	2
125	2	N1-III	Euro 3 (DPF)	2
126	2	N1-III	Euro 4 (DPF)	2
127	2	N1-III	Euro 5 (DPF)	2
128	2	N1-III	Euro 6 up to 2017 (DPF)	2
129	2	N1-III	Euro 6 up to 2017 (DPF+SCR)	2
130	2	N1-III	Euro 6 up to 2017 (LNT+DPF)	2
131	2	N1-III	Euro 6 2018- 2020 (DPF)	2
132	2	N1-III	Euro 6 2018- 2020 (DPF+SCR)	2
133	2	N1-III	Euro 6 2018- 2020 (LNT+DPF)	2
134	2	N1-III	Euro 6 2021+ (DPF)	2
135	2	N1-III	Euro 6 2021+ (DPF+SCR)	2
136	2	N1-III	Euro 6 2021+ (LNT+DPF)	2
137	3	>3,5 t	Conventional	1
138	3	>3,5 t	CNG	4
139	3	>3,5 t	LPG	5
140	3	Rigid <=7,5 t	Conventional	2
141	3	Rigid <=7,5 t	Euro I	2
142	3	Rigid <=7,5 t	Euro II	2
143	3	Rigid <=7,5 t	Euro III	2
144	3	Rigid <=7,5 t	Euro IV (SCR)	2
145	3	Rigid <=7,5 t	Euro IV (EGR)	2
146	3	Rigid <=7,5 t	Euro V (SCR)	2
147	3	Rigid <=7,5 t	Euro V (EGR)	2
148	3	Rigid <=7,5 t	Euro VI (DPF+SCR)	2
149	3	LCV (general)	Electrical	3
150	3	LCV (general)	CNG	4
151	3	LCV (general)	LPG	5
152	3	Rigid 7,5 - 12 t	Conventional	2
153	3	Rigid 7,5 - 12 t	Euro I	2
154	3	Rigid 7,5 - 12 t	Euro II	2
155	3	Rigid 7,5 - 12 t	Euro III	2

156	3	Rigid 7,5 - 12 t	Euro IV (SCR)	2
157	3	Rigid 7,5 - 12 t	Euro IV (EGR)	2
158	3	Rigid 7,5 - 12 t	Euro V (SCR)	2
159	3	Rigid 7,5 - 12 t	Euro V (EGR)	2
160	3	Rigid 7,5 - 12 t	Euro VI	2
			(DPF+SCR)	
161	3	Rigid 12 - 14 t	Conventional	2
162	3	Rigid 12 - 14 t	Euro I	2
163	3	Rigid 12 - 14 t	Euro II	2
164	3	Rigid 12 - 14 t	Euro III	2
165	3	Rigid 12 - 14 t	Euro IV (SCR)	2
166	3	Rigid 12 - 14 t	Euro IV (EGR)	2
167	3	Rigid 12 - 14 t	Euro V (SCR)	2
168	3	Rigid 12 - 14 t	Euro V (EGR)	2
169	3	Rigid 12 - 14 t	Euro VI	2
			(DPF+SCR)	
170	4	Rigid 14 - 20 t	Conventional	2
171	4	Rigid 14 - 20 t	Euro I	2
172	4	Rigid 14 - 20 t	Euro II	2
173	4	Rigid 14 - 20 t	Euro III	2
174	4	Rigid 14 - 20 t	Euro IV (SCR)	2
175	4	Rigid 14 - 20 t	Euro IV (EGR)	2
176	4	Rigid 14 - 20 t	Euro V (SCR)	2
177	4	Rigid 14 - 20 t	Euro V (EGR)	2
178	4	Rigid 14 - 20 t	Euro VI	2
			(DPF+SCR)	
179	4	Rigid 20 - 26 t	Conventional	2
180	4	Rigid 20 - 26 t	Euro I	2
181	4	Rigid 20 - 26 t	Euro II	2
182	4	Rigid 20 - 26 t	Euro III	2
183	4	Rigid 20 - 26 t	Euro IV (SCR)	2
184	4	Rigid 20 - 26 t	Euro IV (EGR)	2
185	4	Rigid 20 - 26 t	Euro V (SCR)	2
186	4	Rigid 20 - 26 t	Euro V (EGR)	2
187	4	Rigid 20 - 26 t	Euro VI	2
			(DPF+SCR)	
188	4	Rigid 26 - 28 t	Conventional	2
189	4	Rigid 26 - 28 t	Euro I	2
190	4	Rigid 26 - 28 t	Euro II	2
191	4	Rigid 26 - 28 t	Euro III	2
192	4	Rigid 26 - 28 t	Euro IV (SCR)	2
193	4	Rigid 26 - 28 t	Euro IV (EGR)	2
194	4	Rigid 26 - 28 t	Euro V (SCR)	2
195	4	Rigid 26 - 28 t	Euro V (EGR)	2
196	4	Rigid 26 - 28 t	Euro VI	2
			(DPF+SCR)	
197	4	Articulated 14 - 20 t	Conventional	2
198	4	Articulated 14 - 20 t	Euro I	2

199	4	Articulated 14 - 20 t	Euro II	2
200	4	Articulated 14 - 20 t	Euro III	2
201	4	Articulated 14 - 20 t	Euro IV (SCR)	2
202	4	Articulated 14 - 20 t	Euro IV (EGR)	2
203	4	Articulated 14 - 20 t	Euro V (SCR)	2
204	4	Articulated 14 - 20 t	Euro V (EGR)	2
205	4	Articulated 14 - 20 t	Euro VI	2
			(DPF+SCR)	
206	4	Articulated 20 - 28 t	Conventional	2
207	4	Articulated 20 - 28 t	Euro I	2
208	4	Articulated 20 - 28 t	Euro II	2
209	4	Articulated 20 - 28 t	Euro III	2
210	4	Articulated 20 - 28 t	Euro IV (SCR)	2
211	4	Articulated 20 - 28 t	Euro IV (EGR)	2
212	4	Articulated 20 - 28 t	Euro V (SCR)	2
213	4	Articulated 20 - 28 t	Euro V (EGR)	2
214	4	Articulated 20 - 28 t	Euro VI	2
			(DPF+SCR)	
215	5	Rigid 28 - 32 t	Euro II	2
216	5	Rigid 28 - 32 t	Euro III	2
217	5	Rigid 28 - 32 t	Euro IV (SCR)	2
218	5	Rigid 28 - 32 t	Euro IV (EGR)	2
219	5	Rigid 28 - 32 t	Euro V (SCR)	2
220	5	Rigid 28 - 32 t	Euro V (EGR)	2
221	5	Rigid 28 - 32 t	Euro VI	2
		C	(DPF+SCR)	
222	5	Rigid >32 t	Euro I	2
223	5	Rigid >32 t	Euro II	2
224	5	Rigid >32 t	Euro III	2
225	5	Rigid >32 t	Euro IV (SCR)	2
226	5	Rigid >32 t	Euro IV (EGR)	2
227	5	Rigid >32 t	Euro V (SCR)	2
228	5	Rigid >32 t	Euro V (EGR)	2
229	5	Rigid >32 t	Euro VI	2
			(DPF+SCR)	
230	5	Articulated 28 - 34 t	Euro II	2
231	5	Articulated 28 - 34 t	Euro III	2
232	5	Articulated 28 - 34 t	Euro IV (SCR)	2
233	5	Articulated 28 - 34 t	Euro IV (EGR)	2
234	5	Articulated 28 - 34 t	Euro V (SCR)	2
235	5	Articulated 28 - 34 t	Euro V (EGR)	2
236	5	Articulated 28 - 34 t	Euro VI	2
			(DPF+SCR)	
237	5	Articulated 34 - 40 t	Euro II	2
238	5	Articulated 34 - 40 t	Euro III	2
239	5	Articulated 34 - 40 t	Euro IV (SCR)	2
240	5	Articulated 34 - 40 t	Euro IV (EGR)	2
241	5	Articulated 34 - 40 t	Euro V (SCR)	2

LIFE GreenYourRoute: A European innovative logistic platform for last mile delivery of goods in urban environment

242	5	Articulated 34 - 40 t	Euro V (EGR)	2
243	5	Articulated 34 - 40 t	Euro VI (DPF+SCR)	2
244	5	Articulated 40 - 50 t	Euro II	2
245	5	Articulated 40 - 50 t	Euro III	2
246	5	Articulated 40 - 50 t	Euro IV (SCR)	2
247	5	Articulated 40 - 50 t	Euro IV (EGR)	2
248	5	Articulated 40 - 50 t	Euro V (SCR)	2
249	5	Articulated 40 - 50 t	Euro V (EGR)	2
250	5	Articulated 40 - 50 t	Euro VI (DPF+SCR)	2
251	5	Articulated 50 - 60 t	Euro II	2
252	5	Articulated 50 - 60 t	Euro III	2
253	5	Articulated 50 - 60 t	Euro IV (SCR)	2
254	5	Articulated 50 - 60 t	Euro IV (EGR)	2
255	5	Articulated 50 - 60 t	Euro V (SCR)	2
256	5	Articulated 50 - 60 t	Euro V (EGR)	2
257	5	Articulated 50 - 60 t	Euro VI (DPF+SCR)	2

7 Bibliography

(n.d.).

- Ahanotu, D. N. (1999). EAVY-DUTY VEHICLE WEIGHT AND HORSEPOWER DISTRIBUTIONS: MEASUREMENT OF CLASS-SPECIFIC TEMPORAL AND SPATIAL VARIABILITY. A ThesisPresented toThe Academic Faculty, In Partial Fulfillmentof the Requirements for the DegreeDoctor of Philosophy in Civil and Environmental Engineering. Georgia Institute of Technology.
- BD Auto. (n.d.). Retrieved 09 12, 2019, from eDUCATO The best zero-emissionsolution for professionals: https://bdauto.co.uk/wp-content/uploads/2017/09/Specsheet-BD-Auto-eDucato-131517m3.pdf
- Borsari Vanderlei, D. A. (2017). Ammonia emissions from a light-duty vehicle. *Transportation Research Part D: Transport and Environment*, pp. 53-61.
- Christophe Rizet, C. C. (2012). Reducing Freight Transport CO2 Emissions by Increasing the Load Factor,. *Procedia Social and Behavioral Sciences*,, pp. 184-195.
- David C. Carslaw, G. R.-T. (2013,). New insights from comprehensive on-road measurements of NOx, NO2 and NH3 from vehicle emission remote sensing in London, UK,. *Atmospheric Environment*, pp. Volume 81, Pages 339-347,.
- Dings, J. (2012, February). Smarter Safer cleane, Summary of research carried out for t&e by fKaautomotive research, 'Design of a tractor for optimised safety and fuel consumption'. Retrieved September 12, 2019, from Transport & Environment (T&E): https://www.european-aluminium.eu/media/1302/concept-design-of-a-crash-management-system-for-heavy-goods-vehicles_briefing.pdf
- ECOINVENT. (n.d.). Retrieved 10 04, 2019, from The ecoinvent Database Version 3: https://www.ecoinvent.org/database/database.html
- *Electric Vehicle Database*. (n.d.). Retrieved 09 12, 2019, from Energy consumption of full electric vehicles: https://ev-database.org/cheatsheet/energy-consumption-electric-car
- *EMISIA*. (n.d.). Retrieved 07 30, 2019, from COPERT the Industry Standard Emissions Calculator: https://www.emisia.com/utilities/copert/
- EMISIA. (2018, July). EMISIA Website. Retrieved 06 21, 2019, from COPERT Documentation - Methodology for the calculation of exhaust emissions – SNAPs 070100-070500, NFRs 1A3bi-iv: https://www.emisia.com/utilities/copert/documentation/
- *Emissions Analytics*. (2018, 06 14). Retrieved 10 04, 2019, from New Real Driving Emissions regulation increases pressure on annual inspection and maintenance testing system -Newsletter: https://www.emissionsanalytics.com/news/new-real-drivingemissions-regulation-increases-pressure-on-annual-inspection-and-maintenancetesting-system
- EQUA INDEX Independent real-world emissions data. (n.d.). Retrieved September 26, 2019, from EQUA LCV INDEX: https://equaindex.com/equa-lcv-index/

- *European Commision.* (2019). Retrieved 9 12, 2019, from Mobility and transport Road Safety: https://ec.europa.eu/transport/road_safety/specialist/knowledge/vehicle/safety_ design_needs/motorcycles_en
- *European Commission* . (n.d.). Retrieved 2019, from Enviroenment: http://ec.europa.eu/environment/air/sources/road.htm

fdgdg. (n.d.). gdgd.

- Fintelman D., H. H.-X. (2015). A numerical investigation of the flow around a motorbike when subjected to crosswinds. *Engineering Applications of Computational Fluid Mechanics*, pp. 528-542.
- Georges Saliba, R. S. (2017). Comparison of Gasoline Direct-Injection (GDI) and Port Fuel Injection (PFI) Vehicle Emissions: Emission Certification Standards, Cold-Start, Secondary Organic Aerosol Formation Potential, and Potential Climate Impacts. Environmental Science & Technology, pp. 51 (11), 6542-6552.
- Honnery Damon, G. J. (2002). The role of LPG in reducing vehicle exhaust emissions. 25th Australasian Transport Research Forum (ATRF02).
- *ICCT (The International Council on Clean Transportation)*. (n.d.). Retrieved 09 30, 2019, from How NOx happens, and why you should care: https://theicct.org/cards/stack/vehicle-nox-emissions-basics
- Jason Kwon, A. R. (2012). Fuel Displacement & Cost Potential of CNG, LNG, and LPG Vehicles, 2012 DOE Hydrogen Program and Vehicle Technologies Annual Merit Review. ARGONNE National Laboratory - US Department of Energy.
- Jaworski, P. &. (2015, January). SCR SYSTEMS FOR NOx REDUCTION IN HEAVY DUTY VEHICLES. Journal of KONES. Powertrain and Transport., pp. 22. 139-146. 10.5604/12314005.1168463.
- Kado NY, O. R. (2005). Emissions of toxic pollutants from compressed natural gas and low sulfur diesel-fueled heavy-duty transit buses tested over multiple driving cycles. *Environ Sci Technol.*
- Kolarova Viktoriya, K. U. (2018). Electric vehicles in commercial fleets: Potentials and challenges from the user perspective in Germany. *Proceedings of 7th Transport Research Arena TRA 2018, April 16-19, 2018, Vienna, Austria.*
- Konstantzos Giorgos, S. G. (2016). Development of a model for assessing Greenhouse Gas (GHG) emissions from terminal and drayage operations. *Operational Research*, pp. 10.1007/s12351-016-0242-0.
- Kühlwein, J. (2016). Driving resistances of light-duty vehicles in europe: present situation, trends, and scenarios for 2025. Retrieved from White paper, The international council on clean transportation: https://theicct.org/sites/default/files/publications/ICCT_LDV-Driving-Resistances-EU_121516.pdf
- Kumar Pradeep, S. A. (2015). Evaluation of Idling Fuel Consumption of Vehicles Across Different Cities. *Conference Paper*.

- Leon Ntziachristos, Z. S.-H. (updated (2018)). *EMISIA website*. Retrieved 09 06, 2019, from EMEP/EEA air pollutant emission inventory guidebook 2016, European Environment Agency: https://www.eea.europa.eu/publications/emep-eea-guidebook-2016/part-b-sectoral-guidance-chapters/1-energy/1-a-combustion/1-a-3-b-i
- Lipman Timothy, D. M. (2002). Emissions of Nitrous Oxide and Methane from Conventional and Alternative Fuel Motor Vehicles. *Climatic Change*, pp. 477-516.
- Marc Stettler, M. W.-G. (2019, January). *Natural Gas as a Fuel for Heavy Goods Vehicles*. Retrieved from https://www.sustainablegasinstitute.org/wpcontent/uploads/2019/01/Technical-Report-1-Natural-Gas-as-a-Fuel-for-Heavy-Goods-Vehicles.pdf
- Martin Rexeis, S. H. (2005). EMISSIONS AND FUEL CONSUMPTION FROM HEAVY DUTY VEHICLES, Working Group A: Vehicle Model, Final Report. *COST 346*, p. 41.
- Mohsin Raza, L. C. (2018). A Review of Particulate Number (PN) Emissions from Gasoline Direct Injection (GDI) Engines and Their Control Techniques. . *Energies*.
- Nam EK, J. T. (2004). Methane Emissions from Vehicles. Environ. Sci. Technol., p. 38.
- Naresh, P. &. (2015). Exhaust Gas Recirculation System. J. of Bioprocessing and Chemical Engineering., pp. 3. 1-6.
- Nikos Xydas, G. N. (2017). LPG for Heavy Duty Engines, Buses, Trucks, Marine, Innovation & *Technology*. Dublin, Ireland: GLOTEC, the Global Technology Network of WLPGA (World LPG Association).
- Nilrit S., S. P. (2013). Emission factors of CH4 and CO2 emitted from vehicles. *American Journal of Environmental Sciences*, pp. 38-44.
- Patrik Soltic, M. W. (2003). NO2/NO emissions of gasoline passenger cars and light-duty trucks with Euro-2 emission standard,. *Atmospheric Environment*,, pp. 5207-5216.
- Prati, M. V. (2014). Road Grade Influence on the Exhaust Emissions of a Scooter Fuelled with Bioethanol/Gasoline Blends. *Transportation Research Procedia.*, p. 3. 10.1016/j.trpro.2014.10.059.
- Qian Yu, T. L. (2016). Improving urban bus emission and fuel consumption modeling by incorporating passenger load factor for real world driving. *Applied Energy*, pp. Volume 161, Pages 101-111.
- Quan-shun, Y. &.-w.-s.-j.-h. (2017). Application of Diesel Particulate Filter on in-use On-road Vehicles. *Energy Procedia*, pp. 105. 1730-1736. 10.1016/j.egypro.2017.03.496.
- Ruissen, A. (n.d.). GC Analysis of Sulfur Compounds in LPG using the DVLS Liquefied Gas Injector combined with a Sulfur Specific Detector. Rotterdam - The Netherlands: DA VINCI LABORATORY SOLUTIONS B.V. Retrieved from GC Analysis of Sulfur Compounds in LPG using the DVLS Liquefied Gas Injector combined with a Sulfur Specific Detector.

- Saharidis, G. (2013). GreenRoute: A web based platform which help individuals and companies move commodities with the most environmental friendly way, minimizing emissions and transportation cost. *Deliverable 1.3, Scientific review paper on models calculating greenhouse gas emissions. FP7-PEOPLE-2011-CIG project.*
- Saharidis, G. K. (2017). Environmental Externalities Score: a new emission factor to model green vehicle routing problem. *Energy Systems*, *8*(4), 673-691.
- Samuel, S. &. (2002). Automotive test drive cycles for emission measurement and real-world emission levels - A review. *Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering.*, pp. 216. 555-564. 10.1243/095440702760178587.
- Saraf R.R., T. S. (2009). Comparative Emission Analysis of Gasoline/LPG Automotive Bifuel Engine. World Academy of Science, Engineering and TechnologyInternational Journal of Mechanical and Mechatronics Engineerin, pp. Vol:3, No:3.
- Setyawan, A. &. (2015). The Effect of Pavement Condition on Vehicle Speeds and Motor Vehicles Emissions. Procedia Engineering. pp. 125. 424-430.
- Tasic T., P. P. (2011). GASOLINE AND LPG EXHAUST EMISSIONS COMPARISON. Advances in Production Engineering & Management, pp. 87-94.
- *TranpsportPolicy.net.* (n.d.). Retrieved 10 04, 2019, from EU: Fuels: Diesel and Gasoline -Technical Standards: https://www.transportpolicy.net/standard/eu-fuels-dieseland-gasoline/
- Under the bonnet: specifications, dimensions and weight of the Sprinter Panel Van. (n.d.). Retrieved 09 12, 2019, from Mercedes-Benz Australia: https://www.mercedes-benz.com.au/vans/en/sprinter/panel-van/technical-data
- Wendan Zhang, J. L. (2015, September). Moving towards Sustainability: Road Grades and On-Road Emissions of Heavy-Duty Vehicles – A Case Study,. Sustainability, MDPI, Open Access Journal, pp. vol. 7(9), pages 1-28.
- Wetzel, P. &. (2010). Diesel Exhaust Aftertreatment System Packaging and Flow Optimization on a Heavy-Duty Diesel Engine Powered Vehicle. SAE International Journal of Commercial Vehicles., pp. 3. 143-155. 10.4271/2010-01-1944.
- Wu Xinkai, F. D. (2015, January). Electric vehicles' energy consumption measurement and estimation. *Transportation Research Part D Transport and Environment*.
- Yang, J. &.-A. (2018). Gasoline Particulate Filters as an Effective Tool to Reduce Particulate and PAH Emissions from GDI Vehicles: A Case Study with Two GDI Vehicles. *Environmental Science & Technology.*, p. 52. 10.1021/acs.est.7b05641.
- Zhang Kai, B. S. (2011). Vehicle emissions in congestion: Comparison of work zone, rush hour and free-flow conditions. *Atmospheric Environment*, pp. 1929-1939.

